@aetmaths aetmathematics.org mathstoolkit.org

This document can be used but we restrict editing or removal of the Academies Enterprise Trust logo. Copyright © AET Solutions Ltd (AETS) 2010 All rights reserved.

Moor Nook CP School

Year 3

Medium Term Plans

February 2021

AETmathematics.org

Overview of Year

Autumn Term	Number and Algebra			Geometry and Measures		
Autumn rem	1. Investigating Number Systems	2. Pattern Sniffing	3. Solving Calculation Problems	4. Generalising Arithmetic	5. Exploring Shape	6. Reasoning with Measures

Spring Torm	Number and A	lgebra	Statistics
Spring Term	7. Discovering Equivalence8. Reasoning with Fractions	9. Solving Number Problems	10. Investigating Statistics

Summer Term	Geometry	Number and Algebra		Geometry and Measures	
Summer renn	11. Visualising	12. Exploring	13. Proportional	14. Describing	15. Measuring
	Shape	Change	Reasoning	Position	and Estimating

Year 3 Overview:			
Unit	Learning Hours	Summary of Key Content	
1. Investigating Number	8	Read and write numbers to 1000 in words and numerals; recognise place vale up to 3 digits; identify,	
Systems		represent and estimate numbers; compare and order numbers up to 1000.	
2. Pattern Sniffing	10	Count in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number; recall	
		multiplication tables for 3s, 4s and 8s.	
		(Please refer to Moor Nook's Mental & Written Calculation Policies)	
3. Solving Calculation	10	Add and subtract mentally up to 3 digits plus ones, or tens or hundreds; add and subtract up to 3d us	
Problems		formal methods; estimate answers and use inverse operations to check a calculation.	
		(Please refer to Moor Nook's Mental & Written Calculation Policies)	
4. Generalising Arithmetic	12	Revisit mental addition and subtraction (3d + 1s or 10s or 100s) and formal methods of calculation for	
		addition and subtraction up to 3d. Solve problems using addition and subtraction including missing	
		number problems, number facts, place value etc.	
		(Please refer to Moor Nook's Mental & Written Calculation Policies)	
5. Exploring Shape	8	Identify horizontal and vertical lines; identify pairs of parallel or perpendicular lines; recognise angles in	
		shapes or as turns; identify right angles; recognise multiples of right angles.	
6. Reasoning with Measures	10	Add and subtract money in practical contexts to give change etc.	
		(Please refer to Moor Nook's Mental & Written Calculation Policies)	
		Measure perimeter of simple 2D shapes	
7. Discovering Equivalence	15	Recognise, find and write fractions of a discrete set of objects; recognise and use fractions as numbers;	
8. Reasoning with Fractions		compare and order unit fractions; compare and order fractions with the same denominator; recognise	
		and show equivalent fractions. Add and subtract fractions with same denominator within one whole.	
9. Solving Number Problems	16	Write statements for multiplication and division using times tables, including up to 2d x 1d.	
		(Please refer to Moor Nook's Mental & Written Calculation Policies)	
10. Investigating Statistics	8	Interpret and construct simple tally charts, pictograms, block diagrams and tables; ask and answer	
		simple questions by counting and sorting; ask and answer questions by totalling and comparing data.	
11. Visualising Shape	8	Draw 2D shapes and make 3D shapes; recognise 3D shapes in various orientations and describe them.	
12. Exploring Change	12	Tell and show the time to nearest minute using analogue and digital clocks, using 12 and 24 hours.	
		Know number of seconds in a minute, number of days in each month, year and leap year. Compare	
		durations of events.	
13. Proportional Reasoning	8	Solve problems involving multiplication and division including missing numbers, scaling and	
		correspondence problems.	
		(Please refer to Moor Nook's Mental & Written Calculation Policies)	
14. Describing Position	0	No content for Stage 3 in this strand	
15. Measuring and	6	Measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g); volume/capacity (l/ml)	
Estimating			

Year 3	Unit 1: Investigating Number Systems		
8 learning hours	This unit introduces the number systems and structures that we use at different levels of the curriculum. At KS1 children are working on the place value system of base 10 with the introduction of Roman Numerals as an example of an alternative system in KS2. Negative numbers and non-integers also come in at this stage and progress into KS3. At KS3 and KS4 we start to look at other ways of representing numbers, including standard form, inequality notation and so on.		
Prior Learning	Core Learning	Extension Learning	
 read and write numbers to at least 100 in numerals and in words 	read and write numbers up to 1000 in numerals and in words	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	
 recognise the place value of each digit in a two-digit number (tens, ones) 	 recognise the place value of each digit in a three-digit number (hundreds, tens, ones) 	 recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) 	
 identify, represent and estimate numbers using different representations, including the number line 	 identify, represent and estimate numbers using different representations 	 identify, represent and estimate numbers using different representations 	
use place value and number facts to solve problems	solve number problems and practical problems involving these ideas	 solve number and practical problems that involve all of the above and with increasingly large positive numbers round any number to the nearest 10, 100 or 1000 round decimals with one decimal place to the nearest whole number 	
compare and order numbers from 0 up to 100; use <, > and = signs	➤ compare and order numbers up to 1000	 order and compare numbers beyond 1000 compare numbers with the same number of decimal places up to two decimal places 	

	Exemplification	Vocabulary	
 a) Write this number using numerals: Eight hun b) Write this number in words: 670 	dred and fourteen	thousand (s) four digit	
2. What is the value of the digit 7 in the number	exact position order		
3. a) Represent 630 on this number line 600	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
b) Represent 245 using base 10		more than greater than	
c) State which number is shown here:		less than estimate position	
4. Here are some number cards		hundreds, tens, ones estimate position	
 a) Choose three cards to make the smallest possi b) Choose three cards to make the largest possible 		hundreds, tens, ones	
57 570 750 75 175 751 517 Representation	Fluency	Probing Questions	
Representing Numbers	1. Convert a given representation to a number (verbal or numerals)	What is the same and different about	
 Represent 2 digit numbers (loose and in column format) using: 	 recap two digit numbers e.g. 53 	these two representations?	
 Individual items e.g. counters, 	\circ recap two digit numbers that are multiples of 10 e.g. 80	What is the same and what is different	
cubes ○ Individual items with some place	\circ three digit numbers e.g. 672	about 1, 10, 100 and 1000?	
value shown but full separation e.g.	\circ three digit numbers that incorporate zeroes e.g. 402 or	1, 10, 100 and 1000 !	
1 5			
beadstrings			
 Separable to-scale tens and ones e.g. bundles of Straws, sticks of 	780		
 Separable to-scale tens and ones e.g. bundles of Straws, sticks of unifix 	780	Show me how we can represent the	
 Separable to-scale tens and ones e.g. bundles of Straws, sticks of unifix Inseparable to-scale tens and ones e.g. Numicon 10s and 1s, Base 10, 		Show me how we can represent the number 351 using - base 10	
 Separable to-scale tens and ones e.g. bundles of Straws, sticks of unifix Inseparable to-scale tens and ones 	 Convert a given number to a stated concrete or visual 		

 Overlapping place value cards Numerals Represent 3 digit numbers (loose and in column format) using: To-scale inseparable hundreds, tens and ones e.g. Base 10, Dienes blocks Not-to-scale hundreds, tens and ones e.g. place value counters, money (£1, 10p and 1p coins), unmarked coloured counters Overlapping place value cards Numerals Exploring the idea of unitisation using double-sided counters to see how to use a different colour to represent a set amount of ones (heading towards the use of tens and ones as one of the easiest combinations) Develop sense of size of numbers up to 1000 using paper strips and paperclips to position e.g. strip represents 0-1000, where is 234? What if the strip now represents 0-500? 	 three digit numbers that incorporate zeroes e.g. 402 or 780 3. Partition a number into hundreds, tens and ones and state the value of a given digit within a number Recap two digit numbers Three digit numbers Reverse problem to find number from place value information Partition in a non-standard way (i.e. not just H, T, U) Suggest two or more different partitions of the same number 	Show me where 350 would be on this blank paper strip that goes from 0-1000. And now where it would be if the strip went from 0-500? 0 -400. What's the same and different? 761, 167, 176, 671, 716, 617 Convince me that 300 + 100 + 50 + 10 + 2 is a correct partitioning of 462 Convince me that 567 is represented by 5 hundreds, 6 tens and 7 ones in this apparatus Always, Sometimes, Never? There is one way to partition a three digit number Always, Sometimes, Never? There is a 'best way' to partition a three digit number. Convince me that 4 hundred and thirty- fourteen is worth the same as 444
 Reading and Writing Numbers Use (and make) word/numeral number cards to help convert between numerals and words 	 4. Convert a number written in words to numerals Recap two-digit multiples of ten e.g. Eighty Recap two digits e.g. Eighty-four Three digits multiples of 100 e.g. four hundred Three digits multiples of 10 e.g. four hundred and thirty Three digits with no tens e.g. four hundred and seven Three digits e.g. four hundred and thirty-seven 	Show me the number six hundred and thirty-two in symbols What is the same and what is different: three hundred and five, five hundred and thirty, three hundred and fifty, fifty-three Always, Sometimes, Never? If you take three digits, there are six different three-digit numbers that you can make with them.

	5. Convert a number written in numerals to words	Show me the number 405 in words
	 Recap two-digit multiples of ten e.g. 70 	M/het/a the same and whet/a different/a
	 Recap two digits e.g. 75 	What's the same and what's different? Six hundred and seven; 670; 706; Seven
	 Three digits multiples of 100 e.g. 700 	hundred and sixty
	 Three digits multiples of 10 e.g. 750 	
	 Three digits with no tens e.g. 705 	
	 Three digits e.g. 765 	
	6. Recognise matching numerals, words and representations	Show me all the different ways you can
	 Matching pairs 	represent 416.
	 Matching three or more items 	
	 Matching representations without the numerals present 	
Comparing and Ordering	7. Compare two numbers to say which is greater, using > or < to	Show me which of these is the
 Use apparatus and then visuals and then number cards (abstract) to explore 	notate	greatest/the least 243, 342, 432, 234, 423, 324
which number is greater when	 Recap: two two-digit numbers 	
comparing	 One three-digit number, one two-digit number 	Convince me that 324 is less than 342
Use number cards to explore making	 Two three digit numbers (unrelated) 	What's the same and what's different?
different three digit numbers and finding the smallest/largest	 Two three-digit numbers (similar digits) 	654 < 765 ; 714 > 704 ; 914 < 940; 435 > 453
the smallest/largest	 Mixture of representations/words/numerals 	
	8. Order numbers from smallest to largest	Show me a number that could complete 567 >;
	 Order three numbers: 	567 >,
	 Recap: (one and) two-digit numbers only 	Show me a number that could complete
	 Three-digit numbers (unrelated) 	456 < < 516
	 Three-digit numbers (similar digits) 	Always, Sometimes, Never?
	 Order four or more numbers (as above) 	If you take a three digit number and reverse its digits, you will get a bigger
	\circ Find a number that lies between two given numbers (2	number than you started with.
	digits, then 3 digits)	

Further Extension	Rich and Sophisticated Tasks
1. 674 is made of 6 hundreds, 7 tens and 4 ones.	Recognise the place value of each digit in a three-digit number (hundreds, tens,
674 is also made of 67 tens and 4 ones.	ones)
674 is also made of 6 hundreds and 74 ones.	NRICH: Coded Hundred Square * P
Find different ways of expressing: 630; 704; 867	NRICH: Which Scripts? * P
2.	Solve number problems and practical problems involving these ideas
Captain Conjecture says 'The number in the place value grid is the largest 3-digit number you can make using all 10 counters'.	NRICH: <u>Take Three Numbers</u> * I
algest s digit hember you can make using an to counters.	NRICH: <u>Three Neighbours</u> ** I NRICH: Prison Cells ** G P
100s 10s 1s	NRICH: <u>Spot Thirteen</u> * G P
	NRICH: Square Subtraction *** I
	NRICH: Planning a School Trip * p
	NRICH: Magic Vs ** P
Do you agree?	NRICH: Number Differences * G P
	NRICH: Sitting Round the Party Tables * P
Explain your reasoning.	NRICH: Dotty Six * G NRICH: Nim-7 * G
	NRICH: <u>Number Match</u> * G
3. Insert a digit into each box so that the numbers are in order	NRICH: Cubes Here and There * I
from smallest to largest.	NRICH: A Mixed-up Clock * P
	NRICH: That Number Square! * I
Which digits can you place in the boxes to create the largest interval between	
any two consecutive numbers?	
4.	
Join each number to the set that it belongs to.	
1 to 100	
463 101 to 200	
163	
999 201 to 300	
301 to 400	
99 401 to 500	
349 greater	
than 500	
5. Find all the different numbers you can make from these digit cards: 3, 4 and 7	

Misconceptions	Teacher Guidance and Notes		
Children sometimes write eight hundred as 8 100	When teaching place value use practical resources to expand on different base representations to emphasise the unitised structure of number ie 231 = 2 hundred		
Children struggle if either the tens or the units are 'missing' e.g. seven hundred and four can be miswritten as 74 or 740	squares, 3 ten rods and 1 unit/ ones in Base 10. Vary the resource used here - consider Dienes rods, (place value) counters or even coins.		
Children struggle when bridging the hundreds e.g. finding ten less than 407 can lead to wrong answers such as 307	It is important that children develop their number sense here- they should be able to place numbers on a blank number line including where the scale changes. Try		
Children confuse the meaning of < and >, finding it hard to tell which is which.	taking a blank paper strip as a scale from 0-1000 and asking children to place 2 on it. Then change the scale to 1-500 and ask them to do the same thing - they should be developing the ability to change the placement based on the scale.		
	sment Checklist		
1. I can read and write numerals and words from 100 to 500			
2. I can read and write numerals and words up to 1000.			
3. I can read and write decimals with one decimal place using numerals and	words.		
4. I can understand place value of each digit in a 3 digit number.			
5. I can partition 3-digit numbers into hundreds, tens and ones and then in different ways			
6. I can position / estimate numbers up to 1000 on a number line or other representation			
7. I can solve number problems using representations and known number facts.			
8. I can compare two numbers up 1000 and use the signs <, > (and =) to she	. I can compare two numbers up 1000 and use the signs <, > (and =) to show this comparison.		

Year 3	Unit 2: Pattern Sniffing		
10 learning hours	This unit explores pattern from the early stages of counting and then counting in 2s, 5s, and 10s up to the more formal study of sequences. This sequence work progresses through linear sequences up to quadratic, other polynomial and geometric for the most able older students. For children in KS1, this unit is heavily linked to the following one in terms of relating counting to reading and writing numbers.		
	Also in this unit children and students begin to study the properties of numbers an skills as they explore odd/even numbers, factors, multiples and primes before mo		
Prior Learning	Core Learning	Extension Learning	
count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward	 count from 0 in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number 	 count in multiples of 6, 7, 9, 25 and 1000 find 1000 more or less than a given number 	
 order and arrange combinations of mathematical objects in patterns and sequences recognise odd and even numbers 			
 recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables 	recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	 recall multiplication and division facts for multiplication tables up to 12 x 12 recognise and use factor pairs and commutativity in mental calculations 	
	Exemplification	Vocabulary	
 a) Write the next two numbers in the r 8, 16, 24, 32, 40,,, 0, 50, 100, 150, 200, 250,, b) Find 10 less than 74 		count from count in forwards/backwards pattern / number pattern 10 more/less	
c) Find 100 more than 456		100 more/less tenth missing number	
2. Complete the missing numbers in the number sentences:		times table multiplication	
a) 3 x 8 = b) 4 x = 36		division multiple	
c) $20 \div \dots = 4$ d) $\dots \div 3 = 7$		array row column	
		groups	

Representation	Fluency	Probing Questions
Counting:	1. Count from 0 in steps of 3, 4 and 8	What's the same and what's different?
Represent counting in 4s and 8s using	\circ work out the steps using repeated addition	16, 24, 32, 44
repeated addition with:	\circ work out some steps using doubling skills	Always, Sometimes, Never?
 Numicon Counters on a blank track 	\circ count from 0 up to 10 th multiple of 4 and 8 with	Multiples of three have digits that add up to 3, 6 or 9
 Counters in groups of 4 	concrete/visual aid	,
 Bead string Placing counter on/Colouring in 	\circ count from 0 up to 10 th multiple of 4 and 8 without	Always, Sometimes, Never? Numbers that end in 4 or 8 are multiples of
100-square	concrete/visual aid	4.
 Represent counting in 50s and 100s 	\circ count from 0 beyond 10 th multiple of 4 and 8	
using money	2. Count from 0 in steps of 50 and 100	What's the same and what's different?
Use a counting stick to represent the	\circ work out the steps using repeated addition	Counting in 50s and Counting in 100s
first ten multiples of 4, 8, 50 and 100 -	 work out some steps using doubling skills 	Convince me that 350 comes after 300 when
explore which values can be found by doubling.	\circ count from 0 up to 10 th multiple of 50 and 100 with	counting in 50s.
doubling.	concrete/visual aid	
	\circ count from 0 up to 10 th multiple of 50 /100 without	
	concrete/visual aid	
	\circ count from 0 beyond 10 th multiple of 50 (and 100)	
10/100 more and less	3. Find 10 more than a number	Show me 10 more than 57/97/403/999
• Use a range of apparatus to count on or	\circ by counting on 10 (range of apparatus: fingers,	Convince me that 267 is ten more than 257
count back 10	labelled number line, bead string, hundred square)	
Use a hundred square to discover the	\circ using a hundred square to jump one row down	Always, Sometimes, Never When I find 10 more than a number, only
short-cut for adding 10 (and subtracting	\circ mentally, by increasing the number of tens by one	one digit will change
10) i.e. one row difference	 examples beyond 100 	
 Represent 10 more/less using base 10/Dienes rods 	\circ bridging over multiples of 100 e.g. 10 more than 94	
Represent 10 more/less more using	4. Find 10 less than a number	Show me 10 less than 43/103/1001
place value counters	\circ by counting back 10 (range of apparatus: fingers,	Always, Sometimes, Never
Represent 100 more/less using base 10	labelled number line, bead string, hundred square)	When I find 10 less than a number, only one digit will change

or Dienes	 using a hundred square to jump up one row 	
 Represent 100 more/less more using place value counters 		
	 mentally, by decreasing the number of tens by one 	
	 examples beyond 100 	
	 bridging over multiples of 100 e.g. 10 less than 304 	
	5. Find 100 more than a number	Show me 100 more than 432/709/999
	 Using base 10 or place value counters 	Always, Sometimes, Never
	 Mentally, by increasing the numbers of 100s by one 	When I find 100 more than a number, only
	 Examples beyond 1000 	one digit will change
	 Bridging over multiples of 1000 e.g. 100 more than 	
	945	
	6. Find 100 less than a number	Show me 100 less than 432/709/2007
	\circ 3 digits, with apparatus/visual aids (e.g. base 10 or	
	place value counters)	
	\circ 3 digits, mentally (by decreasing the numbers of 100s	
	by one)	
	 examples beyond 1000 	
	 bridging over multiples of 1000 e.g. 100 less than 	
	2045	
Times tables	7. Find and begin to recall times table multiplication facts (3s, 4s,	Show me a representation of the 8 times
Represent a times table multiplication	8s)	table
 Represent a times table multiplication calculation in multiple ways: 	 By representing the calculation concretely to deduce 	What's the same and what's different?
e.g. 3 x 6 as: o 6 groups of 3 objects o repeated addition using 6 numicon 3s	the answer	4, 3, 12, 8
	 By representing the calculation visually to deduce the 	
	answer	
 6 lots of 3-rods (Cuisenaire) as an array made of 6 rows of 	 By relating the calculation to another known 	
3 counters/dots	calculation and counting on/back or doubling etc	
Represent a times table division	 By beginning to recall key facts 	

 e.g. 24÷ 3 = as 24 objects grouped in 3s 24 objects grouped into an array (columns of 3) Represent a times table division with unknown divisor in multiple ways e.g. 27÷ = 3 as 27 objects shared into 3 piles 27 objects grouped into an array (with rows of 3) Represent a times table division with unknown dividend using an array e.g. 27 = 5 as 	 and begin to recall times table Unknown answer Unknown divisor Unknown dividend Beginning to recall key fact Ithe other related facts when a tiplication or division fact: Given a multiplication fact and two related multiplication fact, state and two related multiplication 	cts given one times table , state the equivalent related division facts e the equivalent division fact	Convince me that 4x8 gives me the same answer as 8x4 What's the same and what's different? $3x2, 2x3, 6\div 2, 6\div 3$ Show me the fact family for 4x3 If I know 8 x 4 = 32, then I also know Show me the possible calculations represented by this array
Further Extension		Rich and S	Sophisticated Tasks
 1. What is the relationship between these calculations? 3x 2. Complete the following: a) 83 + = 93 b) 104 + = 204 c) 100 = 692 d) 10 = 876 3. Putting the digits 3, 4 and 8 in the empty boxes, how marcalculations can you make? Which one gives the largest answer? Which one gives the smallest answer? 	given NRICI Recal tables NRICI NRICI	from 0 in multiples of 4, 8, 50 number I: <u>How Would We Count?</u> * and use multiplication and div I: <u>Ordering Cards</u> * G P I: <u>Music to My Ears</u> * P I	and 100; find 10 or 100 more or less than a P vision facts for the 3, 4 and 8 multiplication
Misconceptions		Taaahar	Guidance and Notes
Pupils forget to include 0 when counting	10		100-square to understand how 10 more is 1

AETmathematics.org

	think that multiples of 3 will all be odd; Pupils think that numbers ending I be multiples of 3 and so on	Use the fact family concept to get children to find the associated facts e.g. for $3x4=12$ you would also write $4x3=12$, $12\div4=3$, $12\div3=4$.	
		Use a counting stick to help children learn their times tables (multiplication and division facts) as well as to start to see how they relate to each other.	
	Key Asses	sment Checklist	
1.	I can count in steps of 4 and 8 from 0; I can explain how the pattern of 4s	s and 8s are related	
2.	2. I can count in 50s and 100s from 0; I can explain how the pattern of 50s and 100s are related.		
3.	3. I can find 10 more and 10 less than a given number		
4.	4. I can find 100 more and 100 less than a given number		
5.	5. I can count forwards and backwards in tenths, saying the whole number for every ten tenths		
6.	6. I can recall the 3 times table (multiplication and division facts)		
7.	7. I can recall the 4 and 8 times tables (multiplication and division facts)		
8.	8. I can use the 3, 4 and 8 times table facts to solve problems		

@aetmaths aetmathematics.org mathstoolkit.org

Year 3	Unit 3: Solving Calculation Problems		
8 learning hours	This unit explores the concepts of addition and subtraction at KS1 building to wider arithmetic skills including multiplication at KS2. It is strongly recommended that teachers plan this unit for KS1/KS2 with direct reference to the calculation policy! At KS3 students are developing calculation into its more general sense to explore order of operations, exact calculation with surds and standard form (which have been introduced in Inv Number Systems briefly) as well developing their skills in generalising calculation to algebraic formulae. They need to substitute into these formulae and calculate in the correct order to master this strand. The formulae referenced are examples of the types of formula they will need to use, but the conceptual understanding for these formulae will be taught elsewhere in the curriculum.		
Prior Learning	Core Learning	Learning L	.eads to
 recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot 	 add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens a three-digit number and hundreds add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction estimate the answer to a calculation and use inverse operations to check answers 	 up to 4 digits written metho addition and appropriate estimate and 	tract numbers with using the formal ods of columnar subtraction where use inverse o check answers to a
	Exemplification	Voc	abulary
a) 456 + 7 b) 264 - 50 c) 356 + 400 d) 342 - 6 e) 385 + 60 and ta		how many more? take (away) leave	
2. Calculate		make	how many left?
a) 267 + 518 b) 739 – 485		sum total altogether score	less fewer difference between
3. Lianne estmates the answer to 682 -	215 as 500.	double	equals
Do you agree with Lianne? Explain you	answer	one more	is the same as

Representation		two (ten) moreminusplusnumber sentenceequalsorderhundredcalculatetencolumn subtractiononeestimateexchangeinversecolumn digitoperationcolumnarcheckcolumn additionProbing Questions
Addition	1. Add a three-digit number and ones/tens/hundreds (up to 1000)	Show me
 Representing numbers using hundreds, tens and ones equipment then combining and finding the total value (aggregation) (exchanging ten 1s for one 10 or ten 10s for one 100 as required when bridging) Progression of tens and ones equipment: separable: bundles of straws or sticks of multilink cubes inseparable: Dienes rods or Base 10 or Numicon 10s and1s not to scale: place value counters or money (expected at this stage) 	 three-digit number + 100 three-digit number + multiple of 100 three-digit number + one-digit number (not crossing a ten) three-digit number + one-digit number (not crossing a ten) three-digit number + 10 three-digit number + multiple of 10 (not crossing a hundred) three-digit number + multiple of 10 (crossing a hundred) 	 two numbers with a sum of 220 two numbers with a sum of 170 two numbers with a sum of 500 Convince me that if I add a multiple of 100 to this number, the tens and ones digits will stay the same. Always, Sometimes, Never? Adding 5 to a number that ends in 6 will result in a number that ends in 1.
This also works for addition of a single digit, multiple of ten or multiple of 100 to a 3-digit number mentally (you will only be adding one colour of counter to the first number so making it easier to calculate the result in your head). It is a visualisation of partitioning the numbers.	 Add a three-digit number and a two-digit number No exchange required e.g. 452 + 37 Exchange required from ones to tens e.g. 452 + 39 Exchange required from tens to hundreds e.g. 452 + 87 Exchange required from both ones to tens and from tens to hundred e.g. 452 + 89 	Show me two numbers that are easy to add two numbers that are hard to add
 Representing addition as counting or jumping on (augmentation) using: a marked number line (jumping in 100s, 10s and 1s) an unmarked number line Representing addition problems using: the bar model 	 3. Add a three-digit number and a three-digit number No exchange required e.g. 452 + 237 Exchange required from ones to tens e.g. 452 + 239 Exchange required from tens to hundreds e.g. 452 + 287 Exchange required from both ones to tens and from tens to hundred e.g. 452 + 289 	 Always, Sometimes, Never? A three digit number add a three digit number gives a six digit number Always, Sometimes, Never? Addition makes a number larger Always, Sometimes, Never? The sum of two odd numbers is even.

 a part-part-whole model ⁶⁵² ⁴³⁷ 		- The sum of three odd numbers is even.
Subtraction • Representing first number using hundreds, tens and ones equipment then removing or taking away the second number and finding the resulting value (paritioning) (exchanging one 10 for ten 1s or one 100 for ten 10s as required when bridging) Progression of tens and ones equipment: • separable: bundles of straws or sticks of multilink cubes • inseparable: Dienes rods or Base 10 or Numicon 10s and1s • not to scale: place value counters or money (expected at this stage) This also works for subtraction of a single digit, multiple of ten or multiple of 100 from a 3-digit number mentally (you will	 4. Subtract ones/tens/hundred from a three-digit number three-digit number - 100 three-digit number - multiple of 100 three-digit number - one-digit number (not crossing a ten) three-digit number - one-digit number (not crossing a ten) three-digit number - 10 three-digit number - multiple of 10 (not crossing a hundred) three-digit number - multiple of 10 (crossing a hundred) 5. Subtract a two-digit number from a three-digit number No exchange required e.g. 675 - 54 Exchange required from tens to ones e.g. 675 - 82 Exchange required from both tens to ones and from hundreds to tens e.g. 675 - 89 6. Subtract a three-digit number from a three-digit number 	Show me two numbers with a difference of 200 Always, Sometimes, Never? The difference of two odd numbers is odd Always, Sometimes, Never? Subtracting 8 to a number that ends in 8 will result in a multiple of 10. Show me two numbers that are easy to subtract two numbers that are hard to subtract Always, Sometimes, Never?
 only be removing one colour of counter from the first number so making it easier to calculate the result in your head). It is a visualisation of partitioning the number. Representing subtraction as counting or jumping back (reduction) using: a marked number line (jumping in 100s, 10s and 1s) an unmarked number line Representing subtraction as a comparative difference between two sets of objects using: 	 No exchange required e.g. 675 - 254 Exchange required from tens to ones e.g. 675 - 359 Exchange required from hundreds to tens e.g. 675 - 281 Exchange required from both tens to ones and from hundreds to tens e.g, 675 - 288 	A three digit number subtract a three digit number gives a double digit number Always, Sometimes, Never? Subtraction makes a number smaller

 number lines with both numbers marked and difference found Representing subtraction word problems using the bar model a part-part-whole model 		
 Estimation and Checking Use place value counters or other place value equipment to represent a number and then round it to the nearest 100 (or even 10) to allow easy mental addition or subtraction. Use the bar model to represent a problem to explore inverse calculations 	 7. Estimate the answer to an addition or subtraction calculation addition - numbers close to multiples of 100 e.g. 596 + 213 subtraction - numbers close to multiples of 100 e.g. 596 - 213 addition - by rounding to nearest 10 e.g. 449 + 219 subtraction by rounding to nearest 10 e.g 671 - 358 	What's the same and what's different? addition; subtraction Show me how you could check whether 281 + 376 = 657 using another calculation Convince me that addition and subtraction are opposites
	 8. Find the inverse calculation to an addition or subtraction and use it to check an answer give fact family for any given addition or subtraction calculation find inverse (addition) - state checking calculation, estimate, calculate exactly find inverse (subtraction)- state checking calculation, estimate, calculate exactly 	What's the same and what's different? $285; 367; 652; 285 + 367; 367 + 285;$ $652 - 285; 652 - 367; 367 - 285$ Show me the other calculations thatyou know the answer to if I tell you that $348 + 417 = 765$ Show me the four number facts that thisbar model shows540300240

		Furth <u>er E</u>	Extension Rich and Sophisticated Tasks
1.			Add and subtract numbers mentally, including:
			 a three-digit number and ones
What do you not	ice? Iship between the	calculations?	 a three-digit number and tens
500 + 400 =	523 + 400 =	523 + 28 =	a three-digit number and hundreds
			NRICH: <u>How Do You See it?</u> * P NRICH: <u>Swimming Pool</u> * P
400 + 500 =	423 + 500 =	423 + 28 =	NRICH: <u>Swinning Pool</u> P NRICH: <u>First Connect Three</u> * G P
300 + 600 =	323 + 600 =	323 + 28 =	NRICH: A Bit of a Dicey Problem *** P
200 + 700 =	223 + 700 =	223 + 28 =	NRICH: Totality * G
100 + 800 =	123 + 800 =	123 + 48 =	
2.			
Complete the	se calculations.	What do you notice?	?
3 + 7 =	8 + 2 =	6 + 4 =	
30 + 70 =	80 + 20 =	60 + 40 =	
33 + 7 =	88 + 2 =	66 + 4 =	
333 + 7 =	888 + 2 =	666 + 4 =	
300 + 700 =	800 + 200 =	600 + 400 =	
3.			
Hundreds	Tens	Ones	
place	place	place	
100	10		
100	10		325 + 247
100	10 10 10 10		
	bleted these cald rors he has mad	culations, but he is inc e. 325	correct. 355
		+ 247 581	<u>-247</u> 112

4.	
There are six 3-digit addition calculations shown below. a) 124 b) 644 c) 366 +233 $+172$ $+277d) 579 e) 791 f) 567+221$ $+163$ $+233Which calculations have no carry digits?Which calculations have a carrying digit only once?Which calculations have a carrying digit twice?Which calculation has the largest answer?Which calculation has the largest answer?Which calculation has the smallest answer?Check that children are looking at the numbers involved, rather than doing the calculations.5.5.Throw a 1 to 6 dice and each time record the digit in one of the place holders.The aim is to get the sum as low as possible. Repeat to find different answers.Could you have done it in a different way?Compete against a friend and compare your answers.$	
Misconceptions	Teacher Guidance and Notes
 Children struggle to interpret whether to add or subtract from the language used. Children can find 'How many more/less?' particularly troublesome as it relates to ordinal values of numbers and relationships. Children struggle to add two and three digit numbers when their place value understanding is weak. If they do not read a number like '352' as 3 hundreds, 5 tens and 2 ones then they struggle to combine the ones, tens and the hundreds from two numbers appropriately. When adding/subtracting 1s, 10s or 100s mentally, children may 'change' the digit in the wrong column. 	 The aim of this unit for these children is to develop security in the process of addition and subtraction and with this more fluid use of the formal methods. Simultaneously they should be developing efficiency of mental methods when appropriate. Therefore, encourage children to look at the numbers in a calculation before commencing to decide if they can do it in their head, with jottings or whether they need to use a written method. As in Stage 2, it is crucial that children see the column addition and subtraction methods as short-hand for the practical process of addition/subtraction with objects. Therefore the representation suggestions above relating to the use of place value objects are crucial precursors to the teaching of column methods.

@aetmaths aetmathematics.org mathstoolkit.org

When performing columnar addition, children may forget to include the tens or hundreds they have generated from earlier exchanges.

They may also fail to exchange them at all and thus end with a two-digit numbers in the 1s column.

When subtracting, children will sometimes subtract the larger number from the smaller initially.

When performing columnar subtraction, children may exchange from the wrong column or fail to exchange altogether (instead just finding the difference between the digits in the column, even where the second one is greater than the first).

Children may also fail to correctly record the exchange and thus not reduce the tens, for example, by one so that the answer is 10 too high.

Children often do not see difference as a representation of subtraction because take away is emphasised so much. They need to see subtraction represented in this way also to challenge this.

When working with addition and subtraction facts, children sometime realise there is a connection e.g. 3+4=7 but then incorrectly rearrange this to make a false second fact e.g. 4 + 7 = 3.

This is particularly true with subtraction facts, where children struggle to place the numbers in a correct order.

The equals sign is not always correctly interpreted as 'has the same value as' by children, who may see it as 'the answer is'.

Some children may use the incorrect operation when checking and fail to realise that they need to use the inverse - this is more pronounced when subtracting.

- At this level you should aim to use place value counters with children but if you need to, go back to objects where the value of the numbers is more obvious e.g. dienes or numicon.
- Ensure children are going through the full exchange process when adding or subtracting i.e. picking up 10 one counters and swapping them for a ten counter or vice versa. They should then 'regroup' and ensure that the tens and ones are in the right columns to be combined.
- To begin to embed the written routines of the calculation policy, it is advised that children work in pairs with one child manipulating the equipment and saying what they are doing aloud while the other child records the calculation using the column method so that they learn that the column method is just a written representation of the practical process (rather than a 'different' method) - see the videos at the NCETM for examples of this. <u>https://www.ncetm.org.uk/resources/40532</u> To help with setting out calculations in columns use large squared paper or laminated grids and mini-WB pens.
- The pitch of this unit is numbers up to 1000, but of course these ideas an be extended beyond 1000 for those children who are confident working with in this area.
- Children need to see and use a variety of question types during this work including: oral questions 'two hundred and thirty-four add six hundred and forty-eight', written questions using symbols '471 –234', simple 'real' problems such as shopping and abstract problems such as finding related subtraction facts to an addition fact.
- Try to model the wide range of language used to signify addition and subtraction see vocabulary list above. The children ultimately need to be able to recognise that a problem is an addition problem from the language (and same for subtraction).
- Use 'sum' only to mean an addition calculation use the word 'calculations' to mean mixed operation computations
- Challenge issues with the use of the = sign by looking at examples where the question is on the right e.g. ? = 514 + 288 as well as balance problems in Further Extension e.g. 143 + 614 = ? + 271
- Language is critical in this learning process make sure you use and insist on the correct terminology for place value e.g. 123+456 would involve twenty add fifty, not two add five. Also insist on children describing their steps orally e.g. I need to add seven ones and 5 ones which makes twelve ones. So I will exchange 10 of these ones for a ten and regroup (put the ten in the right column).

Key Assessment Checklist

- 1. I can add and subtract ones to and from a three digit number mentally
- 2. I can add and subtract tens to and from a three digit number mentally
- 3. I can add and subtract hundreds to and from a three digit number mentally
- 4. I can add two three digit numbers using a columnar method
- 5. I can subtract two three digit numbers using a columnar method
- 6. I can estimate the answer to a three digit + three digit calculation
- 7. I can estimate the answer to a three digit + three digit or a three digit three digit calculation
- 8. I can use the inverse operation to check the answers to addition and subtraction calculations

Year 3	Unit 4 : Generalising Arithmetic		
12 learning hours	This unit is focused on developing fluency in the manipulation of number. At primary level this is focused on arithmetic itself and the methods for four operations particularly; however, this is naturally generalised to thinking about rules of arithmetic more widely at secondary level i.e. algebra. These aspects have been paired together intentionally to help teachers describe algebra as simply a generalisation of number. It is expected that teachers will go back to arithmetic to help students see where the 'rules' of algebra come from. Note that the greyed out content is covered previously and hence is not required content here unless of concern.		
Prior Learning	Core Learning	Learning Leads to	
 recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers 	 > add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds > add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction 	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	
 Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems. show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot 	➢ solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	

	Exemplification	Voca	bulary
1. a) There are 453 people in a cinema. 152 of them are b) Find the value of the missing number: $423 + \bullet = 6$		ones tens hundreds mental method formal method column addition add sum of total altogether plus and more than	subtract take away minus leave fewer less than difference column subtraction fact family inverse operation check equal
Representation	Fluency	Probing Qu	
 Adding and Subtracting Mentally Using a number line to jump in 100s/10s and 1s or using bonds Partitioning and recombining numbers (using a part-part whole model) 	 Recap: Add and subtract 2-digit and 3-digit numbers mentally adding/subtracting single digits adding/subtracting multiples of 10 adding/subtracting multiples of 100 adding/subtracting near multiples e.g. 99 or 19 adding/subtracting combinations of 1s, 10s and 100s using number line for jottings adding/subtracting combinations of 1s, 10s and 100s using mental partitioning (no exchange) adding/subtracting combinations of 1s, 10s and 100s using mental partitioning (examples with an exchange) 	What's the same a different? 234 + 100; 235 + 99; 236 + 98; 244 + 90 Convince me that 5 gives the same and 99	542 + 100 - 1
Adding 3-digit numbers • Using place value equipment to represent column method via exchanging regrouping, leading to and the answer of	 2. Recap: Add two 3-digit numbers together using a formal method 3-digit add 2-digit (no exchange) 3-digit add 3-digit (no exchange) 3-digit add 2-digit (one exchange, ones to tens) 3-digit add 3-digit (one exchange, ones to tens) 3-digit add 2-digit (one exchange, tens to hundred) 3-digit add 3-digit (one exchange, tens to hundred) 3-digit add 2-digit (two exchanges) 3-digit add 3-digit (two exchanges) 	Show me how you 678 - using Dienes rods - using place value - using column met	s or base 10 counters
	 Recognise, represent and solve a simple addition problem (3-digit numbers) 		

	 simple one-step word problem with addition trigger word and given structure for representation (e.g. blank bar model or blank part-part-whole) simple one-step word problem with addition trigger word (without scaffolded structure) one-step addition word problem with subtle reference to addition two-step problems requiring two additions 	
 Subtracting 3-digit numbers Using place value equipment to represent column method via exchanging Example: 344 - 187 then exchanging a 10 for ten 1s then removing 7 	 4. Recap: Subtract a 3-digit number (or a 2-digit number) from a 3-digit number using a formal method 3-digit subtract 2-digit (no exchange) 3-digit subtract 3-digit (no exchange) 3-digit subtract 2-digit (one exchange, tens to ones) 3-digit subtract 3-digit (one exchange, tens to ones) 3-digit subtract 2-digit (one exchange, hundreds to tens) 3-digit subtract 3-digit (one exchange, hundreds to tens) 3-digit subtract 2-digit (two exchanges) 3-digit subtract 2-digit (two exchanges) 	What's the same and what's different? 564 - 213; 563 - 212; 562 - 211; 554 - 203
then exchanging a 100 for ten 10s then removing 80 then removing 100 then removing 100	 5. Recognise, represent and solve a simple subtraction problem (3-digit numbers) simple one-step word problem with subtraction trigger word and given structure for representation (e.g. blank bar model or blank part-part-whole) simple one-step word problem with subtraction trigger word (without scaffolded structure) one-step subtraction word problem with subtle reference to subtraction two-step problems requiring two subtractions 	Convince me that order matters when you are subtracting
 Recognising and Solving Addition and Subtraction Using bar models to represent problems and to decide whether to add or subtract 	 6. Recognise, represent and solve two-step problems combining addition and subtraction (3-digits) simple problems where operation is clear (e.g. people going into and out of a stadium) and structure for representation provided (e.g. blank bar model or part-part-whole model) simple problems where operation is clear (e.g. people going into and out of a stadium) without a structure for representation provided more complex examples involving subtle reference to addition 	What's the same and different? Total; sum; difference; minus; less; fewer; altogether

	and subtraction	
435 229 ?	 Find the fact family (four equivalent calculations) for a given calculation e.g. 543 + 239 	Convince me that 123 + 456 gives the same answer as 156 + 423
 382 ? 754 Using part-part-whole models to represent problems and to decide whether to add or subtract (?) (?)	 8. Check a calculation using inverse operations addition calculation subtraction calculation two-step calculation 	What's the same and what's different? addition; subtraction Convince me that 491 – 274 does not equal 223 (90 - 70 - 20, 4 - 1 =3)
 Missing number problems Using a bar model to represent the problem and show the missing number Example 1: 761 = 243 + ■ 	 9. Solve an missing number addition problem using a subtraction second number missing e.g. 323 + ■ = 545 first number missing e.g. ■ + 239 = 765 answer given first, second number missing e.g. 761 = 243 + ■ answer given first, first number missing e.g. 343 = ■ + 129 	Convince me that I can find the value of \blacksquare in \blacksquare + 239 = 765 by calculating 765 - 239
• Example 2: $623 + 241 = 972 - \blacksquare$	 10. Solve a missing number subtraction problem using an addition or a subtraction first number missing e.g. ■ - 439 = 225 second number missing e.g. 863 - ■ = 345 answer given first, first number missing e.g. 443 = ■ - 229 answer given first, second number missing e.g. 661 = 883 - ■ 	Always, Sometimes, Never? I can find the value of a missing number in a subtraction statement by adding.
7	 11. Recognise, represent and solve a missing number problem addition problems e.g. Martha has some pennies in a jar. Her aunt gives her 218 more pennies, so now she has 442. How many did she start with? subtraction problems (smaller amount missing) e.g. At the school fayre, the cake stall has 520 cakes to sell. 438 of the cakes are sold. How many cakes did they have left? subtraction problems (larger amount missing) e.g. There are 	Show me two numbers with a sum of 20 and a difference of 12

@aetmaths aetmathematics.org mathstoolkit.org

•	abstract, all addition e.g abstract, all subtraction abstract, one of each op worded problems (and I An aeroplane has 315 p An extra 136 passenger The plane now has the plane that left yesterday many passengers were		Always, Sometimes, Never? Two numbers will have the same sum if you increase one by 7 and decrease the other by 7 Always, Sometimes, Never? Two numbers will have the same difference if you increase one by 7 and decrease the other by 7
Further Extension 1. Write the four number facts that this bar model shows. 540 300 240 + = + = + = + = - = Danny has read 62 pages of the cla	valu NRI NRI NRI NRI NRI NRI NRI NRI NRI NRI	Rich and Sophistic alve problems, including missing number pr lue, and more complex addition and subtra RICH: Buying a Balloon * P RICH: GOT IT ** G RICH: Make 37 ** P RICH: Consecutive Numbers ** P I RICH: Super Shapes * P RICH: Strike it Out * G RICH: Dice in a Corner *** P I RICH: Domino Square ** P RICH: Dicey Addition * G RICH: 4 Dom *** P RICH: Finding Fifteen ** P	oblems, using number facts, place

3. Use the digits 0-9 once only to complete these statements to make them true	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Misconceptions	Teacher Guidance and Notes
Children struggle to add and subtract from right to left in columns and hence may end up with answers that are not partitioned into hundreds, tens and ones. Children may place the smallest number at the top of the calculation when using column subtraction method. When numbers exchanges happen, children may forget to notate them and hence not include the extra/fewer tens, hundreds etc. in the new calculations. Children find it hard to identify the command word in a question to decide whether to add or subtract. When attempting missing number problems e.g. 245 + ? = 300 children may give the answer 65 as they have counted up in tens then ones	 This unit is a chance to apply the concepts of Unit 3 to a wider range of problems and hence develop greater confidence in the methods as well as recognising situations in which they should be used. The pitch is numbers up to 1000. It is strongly recommended that you represent word and other problems using a bar model strategy as this will help children to make the key decisions about which operation to use. Be aware of whether a question requires a mental or a written method and encourage children to consider this before launching into a column method. If a mental method is used, children may like to use a number line or partitioning jottings to help them. You can refer to the Calculation Policy document for further guidance on the progression of addition and subtraction from stage to stage. For those children who still require apparatus to support their calculations, try to encourage them to notate a formal method alongside the practical manipulation. Try to model the wide range of language used to signify addition and subtraction – see vocabulary list above. The children ultimately need to be able to recognise that a problem is an addition problem from the language (and same for subtraction). Use 'sum' only to mean an addition calculation – use the word 'calculations' to mean mixed operation computations Challenge issues with the use of the = sign by looking at examples where the question is on the right e.g. ? = 514 + 288 as well as balance problems e.g. 143 + 614 = ? + 271 Language is critical in this learning process - make sure you use and insist on the correct terminology for place value e.g. 123+456 would involve twenty add fifty, not two add five. Also insist on children describing their steps orally e.g. I need to add seven ones and 5 ones which makes twelve ones. So I will exchange 10 of these ones for a ten and regroup (put the ten in the right column).

Key Assessment Checklist

- 1. I can add and subtract numbers with up to 3 digits mentally
- 2. I can add three digit numbers using a formal written method
- 3. I can subtract three digit numbers using a formal written method
- 4. I can recognise and solve an addition word problem
- 5. I can recognise and solve a subtraction word problem
- 6. I can recognise and solve two-step addition and subtraction problems
- 7. I can solve a missing number problem
- 8. I can solve a balanced missing number problem

Year 3	Unit 5: Exploring Shape		
8 learning hours	In this unit children and students explore the properties of shapes, both 2D and 3D. At KS1 this is focused on common shape names and basic features of vertices, sides etc. but this then develops to classifying quadrilaterals and triangles in KS2. Alongside this focus children begin to explore angle and turn in KS2 and develop this to more formal angle rules through Stages 5, 6, 7, 8. Older students begin to explore the field of trigonometry, encountering first Pythagoras' Theorem, then RA-triangle trig before finally looking a the sine rule and cosine rule.		
Prior Learning	Core Learning		Leads to
 identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces compare and sort common 2-D and 3-D shapes and everyday objects 	 recognise angles as a property of shape or a description of a turn identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of perpendicular and parallel lines 	to two right ang compare and cl	ed in different nd obtuse angles nd order angles up les by size assify geometric ng quadrilaterals ased on their
000000	Exemplification Vocabulary		abularv
b) Here is a rectangle	rectangle?	angle turn movement full turn complete whole half turn quarter turn three quarter turn direction left/right clockwise anticlockwise right angle shape vertex	greater than less than close to position horizontal line vertical line parallel lines pair perpendicular lines at right angles distance

г

 3. a) Draw an angle that is less than a right angle b) Jamie is facing the door. He turns through four right angles. Which way is Jamie 	e facing now?	
Representation	Fluency	Probing Questions
 Understanding Angle Using arms (or geostrips) to produce an angle and link this movement to increasing (or decreasing) the turn or the angle Using geostrips (or just paper strips with a paper fastener attaching them) to produce angles and to move from a zero (or tiny) angle where the strips overlap to a bigger and bigger angle as one of the strips rotates away 	 Understand what an angle is describe a turn as an angle identify the angles in shapes compare two (practical) turns to say which is greater compare two (practical) angles to say which is greater compare two angles (as images) to say which is greater produce a right-angle using practical equipment 	Show me an angle that is greater than this one Always, Sometimes, Never A hexagon has 6 angles
 Finding Right Angles Cutting up shapes to separate the angles out Using a right-angle finder to help search for right-angles in the everyday environment Identifying right angles in art and paintings: a good starting point for suitable images is the <u>The Art of Mathematics</u> article from the NCETM 	 2. Identify right angles say whether an angle is a right angle or not if not, say whether an angle is less than a right angle or more than a right angle recognise right angles in shapes and diagrams recognise right angles in every day objects notate a right-angle on a diagram using a right angle sign 	Convince me that this shape has no right angles Convince me that that this shape has more than 6 right angles
 Turning Right Angles Turning through quarter turns, half turns, three quarter turns, full turns and turns close to these (i.e. just less than a right angle, just more than a half turn or 2 right angles). Exploring how turning through 2 right angles, for example, has the same effect as turning through a half turn (and linking this to fractions later where appropriate i.e. 2 quarters make 1 half) Using clocks to carry out quarter turns with the minute hand and associate this to right-angles as shown between the hands 	 3. Describe turns as a number of right angles recognise a right angle as a quarter turn recognise a half turn as equivalent to turning two right angles recognise a half turn as equivalent to turning two right angles (in either direction) recognise a three quarter turn as equivalent to turning three right angles begin to recognise a three quarter turn as equivalent to turning three right angles begin to recognise a three quarter turn as equivalent to turning a right angle in the other direction recognise a full turn as equivalent to turning four right angles carry out turns to objects and images when they are described in quarter turns or right angles 	Show me a quarter turn clockwise/to the right Convince me that this is a quarter turn to the left What's the same and what's different? right, left, clockwise, anticlockwise

 Making Right Angles Making right angles out of sticks (or geostrips). Use the NRich activity <u>Right</u> <u>Angle Challenge</u> as a stimulus and a good virtual version 	 4. Draw right angles horizontal and vertical to page oe in different orientations draw angles that are less than a right angle draw angles that are more than a right angle extension: draw angles that are more than two right angles etc. 	Convince me that this angle is more than a right angle
 Horizontal and Vertical Lines Forming lines using sticks, metre rules, children (!) etc to fit a certain description Playing Line Kung Fu for horizontal and vertical lines [one hand] 	 5. Recognise horizontal and vertical lines vertical lines from a set a lines horizontal lines from a set of lines vertical and horizontal lines in a diagram or shape (i.e. the lines are connected) draw vertical and horizontal lines know that a right angle with a horizontal (or vertical) line will produce a vertical (or horizontal) line 	Show me a vertical line a horizontal line in this picture What's the same and what's different? horizontal and vertical
 Parallel and Perpendicular Lines Measuring the distance between lines in shapes to check if they are parallel Exploring art, designs and paintings to find parallel and perpendicular lines, for example, <u>Composition VII</u> by Kandinsky Forming lines using sticks, metre rules, children (!) etc to fit a certain description Playing Line Kung Fu for parallel and perpendicular lines [two hands] 	 6. Recognise parallel and perpendicular lines: define parallel and perpendicular lines parallel lines from a set of a lines perpendicular lines from a set of lines parallel and perpendicular lines in a diagram or shape (i.e. the lines are connected) notate parallel lines on a diagram using arrows begin to describe the angle that perpendicular lines meet at as a right-angle 	 Show me some parallel lines two lines or faces that are perpendicular to each other a shape which has both parallel lines and perpendicular lines Convince me that parallel lines can be curved What's the same and what's different? parallel and perpendicular Always, Sometimes, Never? 2 lines can be parallel and perpendicular at the same time Always, Sometimes, Never? Perpendicular lines are horizontal and vertical
 Drawing Shapes Using Beebots (and/or logo) to program an object to make turns (and to travel lengths) 	 7. Draw shapes with right angles squares and rectangles other quadrilaterals 	Show me a shape with a right angle exactly one right angle

angle. • large	ngle tagon polygons (include other features/rules e.g. a f symmetry) no right angle Convince me that a triangle cannot have two parallel sides. Always, Sometimes, Never? There are no shapes with exactly one right angle
Further Extension 1. Can you draw a triangle with:	Rich and Sophisticated Tasks Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are
1 right angle?2 right angles?	greater than or less than a right angle NRICH: Square It * GAME NRICH: How Safe Are You?
Can you draw a quadrilateral with: 1 right angle? 2 right angles? 5 right angles? No right angle?	Identify horizontal and vertical lines and pairs of perpendicular and parallel lines NRICH: <u>National Flags</u> * P
If some of these are impossible, can you explain why?	
2. How many different triangles can you find on a 3×3 pin geoboard? How do you decide that they are different?	
How many different quadrilaterals can you find on a 3×3 pin geoboard? How do you decide that they are different?	
3. Can you find any right angles in 3D shapes? Which shapes have right	angles?
Can you find any parallel or perpendicular edges? Where?	

Misconceptions	Teacher Guidance and Notes		
The largest misconception here is in what an angle actually is. Many children relate the distance between the lines or the length of the lines making up the angle to its size, rather than seeing it as a measure of turn from the starting line.	 In this Stage we are exploring the concept of angles only, rather than trying to place a numerical value on the size of an angle. Degrees as a unit of measure for angles are not introduced until Stage 5. 		
For this reason they often say that two equal angles are not equal because one set of lines are longer than the others.	 Right angle has its origins in the latin word for upright, hence describing the angle made between the upright walls/columns/pillars and the floor in buildings. 		
Weak understanding of halves, quarters and three quarters can limit reasoning about turn.	 It is really essential to try to embed an understanding of what an angle actually is (which is difficult!). As a measure, it is utterly different to 		
Children do not always appreciate that the direction of a turn can vary and so needs to be specified. Until they are secure with clockwise and anticlockwise some confusion may persist.	anything children have come across so far and they tend to be so consumed with measuring lengths that they cannot easily translate the idea of a different type of measure.		
Children may interpret a 'right' angle as a right hand turn and hence have their	 Practical exploration of angle as a turn of themselves, of objects etc relative to a starting line from a point is key. 		
own concept of a 'left turn'! They also believe that right angles are always flat and struggle to see them in 3D space.	 Try to avoid using 'corner' interchangeably with angle or turn as they are different concepts - a corner is a point in space whereas an angle is a turn through space. 		
When a right angle is oriented off the horizontal/vertical, children may not recognise it as such. They often infer that the definition of a right angle involves one line being parallel with the bottom of the page. Children sometimes confuse horizontal and vertical directions and lines.	 When working with turns, use directions such as 'to the right' or 'to the left' initially but be prepared to use words like clockwise and anticlockwise. Any children who can tell the time may already use this vocabulary themselves and it is more reliable as it is not dependent on where you are relative to others. 		
Children sometimes think that parallel lines move away from each other/towards each other and can be confused by images showing perspective e.g. railway tracks into the distance.	 There is a significant amount of terminology in this unit and so time needs to be invested in recalling and using these words to enable pupils to access the concepts. 		
The definition of parallel lines as 'not meeting' may not be as helpful as the more	 Explore the meaning of horizontal and vertical and provide real life examples. Link the origin of the word horizontal to the horizon. 		
formal 'lines that are always the same distance apart' for these children.	 Consider the order of learning perpendicular and right angles as children need to understand right angles in order to fully understand 		
Children sometimes believe that perpendicular lines must touch, when they simply need to be oriented at right angles to each other.	 perpendicular. Think carefully about how you define parallel lines - the more popular 'lines that never meet' may be more problematic than the more technical 'lines that are always a fixed distance apart'. 		
	ment Checklist		
1. I can explain what an angle is and identify the angles in a shape			

2. I can recognise a right angle

3. I can use angles to describe a turn.

- 4. I can recognise right angles within a half, three quarter and complete turn
- 5. I can identify whether angles are greater than or less than a right angle.
- 6. I can identify horizontal and vertical lines.
- 7. I can identify pairs of perpendicular lines.
- 8. I can identify pairs of parallel lines.

Year 3	Unit 6 : Reasoning with Measures		
10 learning hours	 This unit focuses on mensuration and particularly the concepts of perimeter, area and volume. Primary children are also working on money concepts at this stage, while older secondary students develop mensuration into volume and surface area of challenging shapes, applying Pythagoras' Theorem and trigonometry also in combination with these problems. Note the focus on reasoning within this unit: it is common for children to complete routine problems involving mensuration but this unit is about the developing a secure conceptual understanding of these ideas that they can apply to a wide range of problems and contexts. The opportunity to use and build on earlier number work is built into this unit and it is expected that children apply their arithmetic skills, for example, in these problems. 		
Prior Learning	Core Learning	Learning Leads to	
 recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change 	 measure the perimeter of simple 2-D shapes add and subtract amounts of money to give change, using both £ and p in practical contexts 	 measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres find the area of rectilinear shapes by counting squares estimate, compare and calculate different measures, including money in pounds and pence 	
	Exemplification	Vocabulary	
 Find the perimeter of these shapes: 2 a) Ali buys a toy costing £2.70. He pays with a f 	10 note. Draw coins to show how much change should he get.	measureamountestimatetotalperimeterpricecentimetrebalancecmbuydrawcostlengthchangewidthdifferenceheightpound, £lesspence, prectanglerulershapeside	
2. u/ 1. buys a toy costing 22.10. The pays with a 2	To hole. Draw could to show how much change should ne get.	3100	

b) Bella wants to buy an apple for 35p, a banana for 28p ar to buy everything?	nd a pen for 59p. She has £1.20. Does she have enough money	size square straight line unit
Representation	Fluency	Probing Questions
 Perimeter Finding the perimeter of shapes with each side the same length (e.g. rectilinear shapes drawn on squared-paper or isometric shapes drawn on dotty paper) Drawing over each square edge of a shape shown on a squared grid to count the number of square edges to find the perimeter. (Could do this using an acetate overlay) Measuring the side lengths of a shape using rulers, tape measures, trundle wheels, metre rules etc. Walking round the outside of a shape and counting aloud (or chanting the lengths before summing them) to find the perimeter. 	 Find the perimeter of a shape (not to scale) with all sides the same length by counting: square on squared paper rectangle on squared paper composite rectilinear shape on squared paper e.g. shapes drawn on isometric paper e.g. 	Show me all the shapes with perimeter 12 on squared paper.
	 2. Find the perimeter of a shape find the perimeter of a shape given lengths of its sides (diagram) find the perimeter of a shape given lengths of its sides (no diagram) word problems e.g. perimeter of playground, field 	Convince me that a 6cm by 6cm square has the same perimeter as a 7cm by 5cm rectangle What's the same and different? 8x2 rectangle; 5x5 square; 6 x 4 rectangle
	 3. Measure the length of all sides of a shape accurately measure the length of a horizontal line (whole number of cm) measure the length of a vertical line (whole number of cm) measure the length of a diagonal line (whole number of cm) measure each length of a rectangle (whole number 	Show me how you could accurately measure the size of an A4 sheet Show me how a 7cm by 5cm rectangle from a piece of card

@aetmaths aetmathematics.org mathstoolkit.org

Money

	 of cm) measure each length of a shape e.g. triangle, parallelogram (whole number of cm) 	
	 4. Find the perimeter by measuring and summing find the perimeter of a shape where sides need to be measured, (whole number of cm) find (estimate) the perimeter of a shape with curved sides using string and laying along a ruler 	Show me how you can accurately measure the perimeter of an A4 sheet What's the same and different? A 10cm by 7cm rectangle; An L- shape made by cutting a 3cm square from one corner of a 10x7 rectangle If you cut a corner out of a rectangle, the perimeter of the
	 5. Draw/find a shape with a given perimeter on squared paper - any shape on squared paper – specified shape, e.g. rectangle 	new shape is the same as the old one. Show me a shape/rectangle with a perimeter of 20cm
	 on isometric paper- any shape on isometric paper- specified shape e.g. triangle ext: on plain paper – any shape ext: on plain paper – specified shape e.g. rectangle (difficult!) 	Show me all the rectangles with a perimeter of 24cm (whole number sides) If I make a triangle by halving a rectangle, the triangle perimeter is half of the rectangle perimeter
 Using coins and notes to form prices concretely and add and subtract (using same approaches as place value counters). Exploring catalogues, take-away menus et cetera and finding the total cost of a meal or a birthday wish-list. Using a budget to check the total falls within it. Checking whether a meal-deal is good value and how much you can save by using it. Using the bar model to represent word problems regarding money, to help decide which operations to 	 6. Recognise and use all British coins/notes to solve problems identify value given coin/note identify coin/note given value make a given amount in coins/notes say which amount is greater e.g. £2 or 150p identify the total value of a selection of coins/notes find multiple ways to make a given amount identify the smallest number of coins to make an amount make two separate amounts in coins/notes and find the total 	Show me all the ways I can make 48p using coins Convince me that I only need 5 coins to produce £4.57

7.

8.

9.

carry out

For example, "Mike spent 76p on a bar of chocolate and £1.35 on a packet of biscuits. If he had a £5 note, how much change will he need?" could be represented using this bar model

	£5	
Bar of Chocolate	Biscuits	Change
76p	£1.35	?

• Exploring combinations of coins that produce the same amounts. E.g. Jim needs to pay £2.32 How could he pay using the least number of coins?

 Add amounts of money in £ and p add two or more items in whole pounds add two items in pence (not bridging 100) add two items in pence (bridging 100) add three or more items in pence add two items in £, not bridging e.g. £1.35 and £1.21 add two items in £, with bridging e.g. £1.35 and £1.82 add three or more items in £ e.g. £1.35 and £2.50 and £1.89 add items in mixed units e.g. 89p and £1.65 	Always, Sometimes, Never? To find the total of ? items costing 99p, work out ? pounds - ? pence.
 Subtract an amount of money from another in £ and p subtract an amount in whole pounds from another subtract an amount in pence from another (<100) subtract an amount in pence from another (>100) subtract two items in £, not bridging e.g. £3.85 - £1.52 subtract two items in £, with bridging e.g. £3.85 - £2.39 subtract an item in pence from one in £ e.g. £2.50 - 65p or £4 - 65p 	Show me how much change I would get from a £5 note for a bill costing £1.43
 Solve problems involving addition and subtraction of money Find change given total cost and money paid Find change given individual item costs and money paid Say which total cost is greater of two sets of items Say how much more an item costs than another item Say if we have enough money for a set of items given budget Say how much more money is required if short/how much money is left if over 	Convince me that you can check your change using an addition Show me five different ways that you could give change for a purchase of £7.60 using a £10 note What's the same and different? addition; subtraction; total; change

Further Extension	Rich and Sophisticated Tasks
 Draw 4 different shapes with a perimeter of 20cm Draw as many shapes as you can made of 5 squares on a piece of squared paper. Find the perimeter of your shapes. 	Add and subtract amounts of money to give change, using both £ and p in practical contexts NRICH: How Much Did It Cost?
3.	
$\pounds 2.60 + \square = \pounds 5.00$	
If I buy a sandwich for ± 2.20 and a drink for 90p, how much change do I get from $\pm 5?$	
Ellie buys 2 pencils. She pays with a £2 coin and gets 70p change. How much did each pencil cost?	
4.	
Sophie and Ravi have saved some money. Altogether they have saved £35. Sophie has saved £4 more than Ravi. How much have they each saved?	
Sam and Tom share this money equally. Divide the coins into two equal groups. Could three friends share the money equally? Explain your reasoning. 20p 50p 50p 10p 50p 5p	

 When measuring perimeter of a shape shown on a squared grid/dotty paper, some children may count border squares of a shape (ie including corners) or dots (on dotty paper) rather than counting the actual distance; this can be a failure to comprehend perimeter or a process failure. In this stage we are introducing the concept of perimeter. This is a chance for children to both develop their measuring skills and their addition of more than two numbers. Spend time ensuring that children really understand the idea of perimeter and that they see shapes drawn on different grids as well as those on problem solving with perimeter as this comes in Stage 4. Note that perimeter is defined as the total distance around a shape. This can be obtained by measuring each side and adding on the ruler (leg for a 4 x 3 rectangle, the firs side is measured as 4, the second side is measured from 4 to 7, then 7 to 11 then 11 to 14). Both should be experiencet to develop understanding. If possible try also to make time to look at perimeter in a practica context using alternative measures things up by allowing an answer without counting, but the two methods need to run side by side long enough to establish the link. In the event of difficulty go back to counting with the ruler alongside. The work on measure builts on earlier ideas of addition and subtraction (See calculation policy or units 3 and 5 for guidance on this issue) as well as familiarity with the coins/notes of the Parkiek outper develop understanding.
British system gained in previous stages. The focus here is on solving problems involving addition and subtraction of amounts.

- 3. I can measure the perimeter of simple 2D shapes by measuring the sides and adding their lengths
- 4. I can solve simple perimeter problems, such as total length of fence needed for a field.
- 5. I can add amounts of money using ${\tt \pounds}$ and p.

- 6. I can subtract an amount of money from another using £ and p
- 7. I can compare different amounts of money, saying which is greater than or less than.
- 8. I can use £ and p in practical contexts such as finding change, checking if there is enough money etc.

Year 3	Year 3 Unit 7 and 8: Discovering Equivalence & Reasoning with Fractions		
15 learning hours	 This unit is a combination of two units that are separated in older year groups to allow teachers extra time to master the concepts. The unit explores the concepts of fractions(decimals and percentages) as ways of representing non-whole quantities and proportions. For the youngest children, the work is focused on fractions and developing security in recognising and naming them. At KS2 this then builds to looking at families of fractions and decimals and percentages. At secondary level this is extended to more complex percentage work and equivalence with recurring decimals and 		
Prior Loarning	surds.	Loorning	Loads to
 Prior Learning ➤ recognise, find, name and write fractions 1/3, 1/4, 2/4 and 3/4 of a length, shape, set of objects or quantity 	Core Learning recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators	 solve problems increasingly has 	arder fractions to tities, and fractions tities, including
 write simple fractions for example, 1/2 of 6 = 3 and recognise the equivalence of 2/4 and 1/2 	 count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 	answer is a wh	nole number
 identify, represent and estimate numbers using different representations, including the number line 	 compare and order unit fractions, and fractions with the same denominators add and subtract fractions with the same denominator within one whole [for example, 5/7 + 1/7 = 6/7] 	equivalent frac	ominator show, using ilies of common tions
	 recognise and show, using diagrams, equivalent fractions with small denominators recognise and write decir equivalents of any number tenths or hundredths recognise and write decir 		any number of redths write decimal
	 identify, represent and estimate numbers using different representations equivalents to 1/4,1/2, 3/4 		1/4,1/2, 3/4
	Exemplification	Vo	cabulary
1. a) What fraction of these triangles are shad $ \begin{array}{c} $	led black?	fraction part whole denominator numerator proportion out of	half third quarter fifth sixth seventh eighth ninth

@aetmaths aetmathematics.org mathstoolkit.org

This document can be used but we restrict editing or removal of the Academies Enterprise Trust logo. Copyright © AET Solutions Ltd (AETS) 2010 All rights reserved.

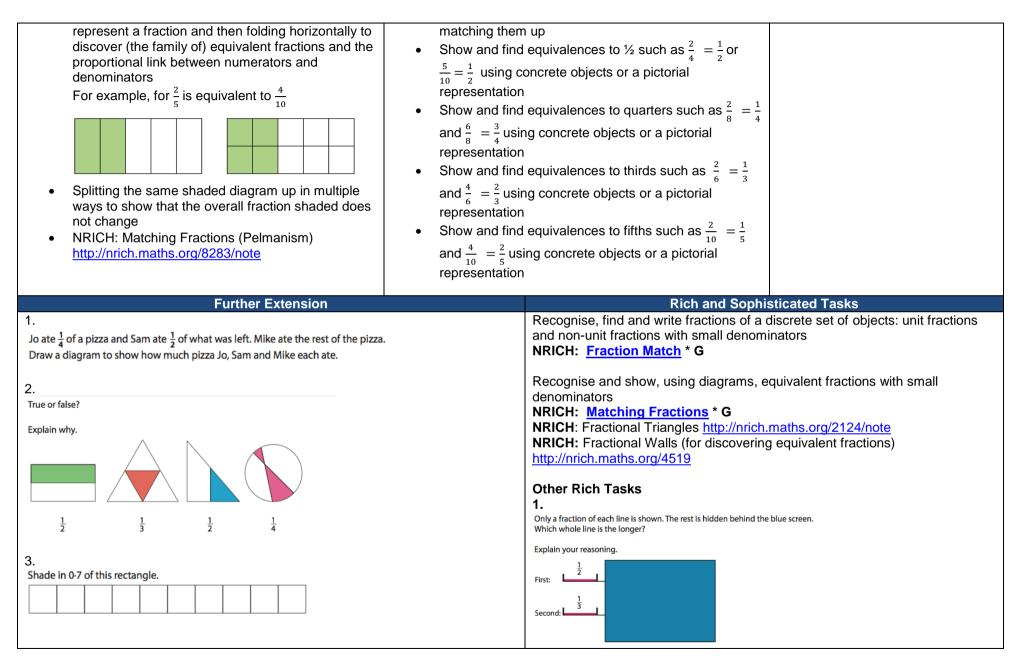
c) Find $\frac{1}{3}$ of 21 2. a) Draw an arrow on this number line to show the position of $\frac{1}{4}$	sharing groups shared between unit fraction non-unit fraction represent bead string number line position bar	tenth Of compare greater than less than order equivalent
0 b) What fraction is the arrow pointing to on this number line?	array	
3. Look at this number line, which is marked in tenths. Complete the missing numbers by counting up and down in tenths.		
4. Use the >, < or = sign to fill in the empty boxes to make a true statement		
a) $\frac{1}{3}$ \Box $\frac{1}{4}$ b) $\frac{3}{5}$ \Box $\frac{1}{5}$		
5. Calculate a) $\frac{2}{5} + \frac{1}{5}$ b) $\frac{6}{7} - \frac{3}{7}$		

6. Explain why $\frac{1}{5} = \frac{2}{10}$. You can use these diagrams to help 7. Show $\frac{1}{3}$ on each of these diagrams:	you if you wish.	
Representation Fractions of a whole/shape	Fluency 1. Represent unit fractions (of an object/shape)	Probing Questions Convince me that $\frac{1}{4}$ is less than $\frac{1}{4}$
 Folding (and colouring) paper circles to represent a unit (and then non-unit) fraction to compare two or more fractions (and hence order them). Folding (and colouring) paper strips to represent a unit (and then non-unit) fractions to compare two or more fractions (and hence order them) Colouring other shapes divided into parts of equal size to show fractions Representing fractions using the bar model 	 half quarter eighth tenth fifth third sixth ninth seventh 	Convince me that $\frac{1}{4}$ is less than $\frac{1}{3}$ Convince me that finding $\frac{1}{6}$ is the same as dividing by 6 Convince me that there are at least 10 different ways to represent $\frac{1}{6}$
 (vertically and horizontally) e.g. 1/6 Producing own fraction wall or fraction-fan to help identify equivalent fractions 	 Compare and order unit fractions say which of two fractions is greater using given representations of the same whole say which of two fractions is greater by producing representations of the same whole order three or more unit fractions realise that unit fractions can be ordered by reverse ordering their denominators 	Convince me that $\frac{1}{3} > \frac{1}{5}$ What's the same and what's different? 1/2, 1/3, 1/4, 1/5 Always, Sometimes, Never? Unit fractions cannot be greater than 1/2
	3. Represent non-unit fractions (<1) (of an object/shape or of	Show me how you can represent $\frac{3}{4}$ in

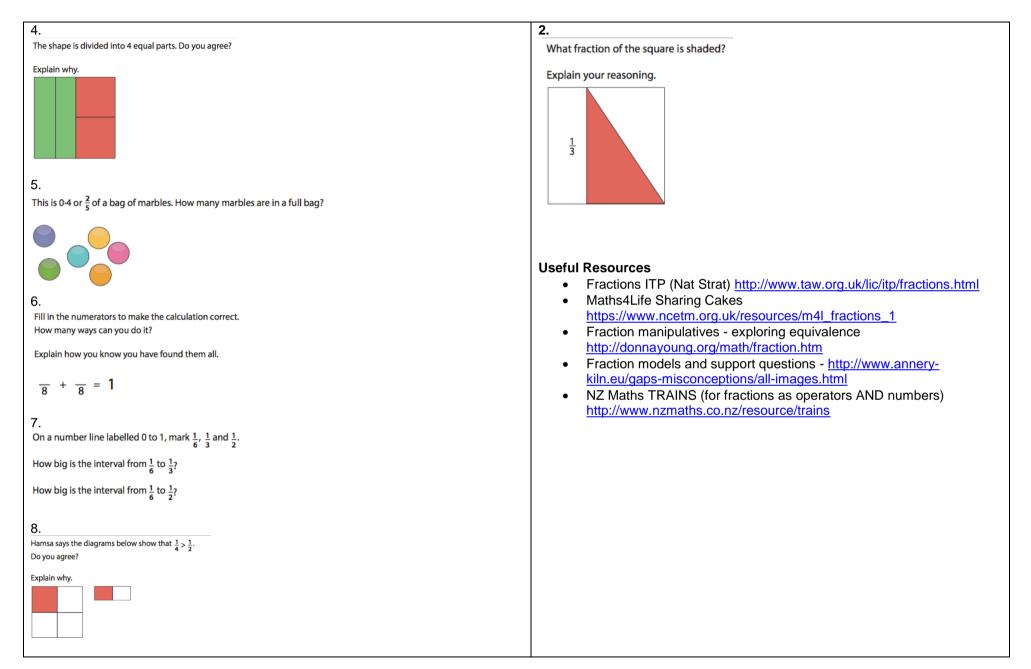
	 a set of objects) quarters eighths tenths, fifths thirds, sixths, ninths sevenths 4. Compare and order non-unit fractions with the same denominator (<1) say which of two fractions is greater using given representations of the same whole say which of two fractions is greater by producing representations of the same whole order three or more fractions with the same denominator realise that fractions with the same denominator can be ordered by ordering their numerators 	as many different ways as possible What's the same and what's different? 1/5, 2/5, 3/5, 4/5 True or false? 3/3 is the same as one whole Convince me that $\frac{2}{10}$ is worth the same as $\frac{1}{5}$ What's the same and what's different? 1/3, 2/6, 1/2, 3/6 Always, Sometimes, Never? You can order fractions with the same denominator by just putting the numerators in order
 Finding Fractions of an Amount/of a set of objects Counting objects to find, for example, the fraction of set of cubes that are green (total number of objects = denominator) Choosing objects so that a given fraction have a property e.g. ³/₈ of the counters are red Laying out objects equally onto each part of a representation of a fraction e.g. and counting the number of objects in the shaded area. Folding a paper strip up into, for example, fifths and laying out/drawing objects onto the strip Arranging objects into groups of size = denominator and counting the objects in the first n 	 5. Find unit fractions of a discrete number of objects by sharing objects out into n groups and counting the number of objects in each group (where n is the denominator) by forming an array to represent the objects visually by dividing the number of objects directly by 2, 4, 8, 10 and so on 6. Find non-unit fractions of a discrete number of objects by sharing objects out into n groups and counting the number of objects in m of these groups (where the fraction is m/n) by forming an array to represent the objects visually 	Always, Sometimes, Never? The larger the denominator the bigger the fraction Show me $\frac{1}{3}$ of 21 Show me how you could use an array to find $\frac{1}{5}$ of 30 Show me how you could use a bar model to find $\frac{1}{5}$ of 30 Show me how you could use an array to find $\frac{2}{3}$ of 24 Show me how you find $\frac{4}{5}$ of 35 counters

AETmathematics.org

 groups, where n is the numerator Arranging objects into an array (with rows of size = denominator) and counting the objects in the first n columns, where n is the numerator. The array representation is a useful way of showing both unit fractions but then their family of fractions too - get children to think about the 'fifth' family of 30, for example, by arranging 30 counters into an array with 5 rows (they should count out 5 counters each time before starting a new column). Then explore how the array 'shows' the value of 1/5 of 30 as well as 2/5 and so on. 	 (counting the number of objects in m columns of an array of width n, where the fraction is ^m/_n) by dividing the number of objects by 2, 4, 8, 10 and so on before multiplying by the number of parts (numerator) 7. Solve problems involving finding fractions of amounts (sets of objects) word problems involving finding a fraction of whole problems involving finding two fractions of a whole and describing the total or the remainder reverse problems – given the fractional amount, find the whole 	Convince me that $\frac{1}{4}$ of 8 pound coins is more than $\frac{1}{5}$ of 10 x 50p
 Fractions as Numbers Using a beadstring to count out the denominator and break it down into n groups, where n is the numerator. For example, finding 1/5 of 20 Using a paper strip and a paper clip to represent the position of fractions on the number line Start by giving the strip a value e.g. the strip represents a length of 12 and ask children to show where 1/2 would be, 1/4 and so on. They will initially do this by finding 1/2 of 12 and so but will eventually begin to see that the fraction itself determines the position. You can then move on to a number line more formally. Positioning fractions on a number line (washing line) from 0 to 1 by using pegs to divide the washing line up into equal pieces. Linking the number line to the bar model from 0-1. Using a counting stick to count up and down in fractions (including tenths as decimals or fractions). Beginning to recognise where the wholes appear in this process. 	 8. Position fractions as points on a number line unit fractions non-unit fractions compare two fractions to say which is greater 	Show me if this strip represents 24, where $\frac{1}{2}$ would be? $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{6}$. Convince me that a unit fraction sits on the number line between 0 and 1 Always, Sometimes, Never? A fraction is a number AND a proportion of a shape Always, Sometimes, Never? Fractions will always sit below 1 on the number line
 Adding and Subtracting Fractions Using the bar model to represent the individual fractions and then combine Example: 	 9. Add and subtract fractions with the same denominator add two unit fractions with the same denominator e.g. ¹/₃ + ¹/₃ add two proper fractions with the same denominator 	Show me how you can add $\frac{2}{8}$ to $\frac{3}{8}$ Show me how you can subtract $\frac{2}{6}$ from $\frac{5}{6}$



$\frac{5}{8} + \frac{2}{8}$	 e.g. ²/₉ + ³/₉ subtract a unit fraction from a proper fraction with the same denominator e.g. ⁶/₇ - ¹/₇ subtract two proper fractions with the same denominator e.g. ⁶/₇ - ⁴/₇ 	Convince me that $\frac{3}{5} + \frac{2}{5} = \frac{5}{5}$ or 1 whole
	 10. Solve problems involving adding and subtracting fractions word problems - addition word problems - subtraction word problems - combinations missing number problems (using inverse operations) 	Always, Sometimes, Never? When adding or subtracting fractions you need to add both the denominator and the numerator
 Representing Decimals Using a counting stick to count up and down in tenths as decimals Using a paper strip and a paper clip to represent the position of decimals on the number line Linking tenths as 0.1s to tenths as sections of a bar model split into 10 equal sections 	 11. Represent and read decimals up to 1 decimal place count in tenths (up and down) within one whole read a decimal <0 with 1 decimal place as a number of tenths interpret a diagram showing tenths as a decimal or fraction write a decimal<0 with one decimal place as a fraction with denominator 10 write a fraction with denominator 10 as a decimal know that 3 tenths, for example, comes from splitting 3 (wholes) into ten equal parts count up in tenths from any number of tenths, reading each multiple of ten tenths as a whole number e.g. <i>eight tenths, nine tenths, one whole</i> count down in tenths from any number of tenths, reading each multiple of ten tenths as a whole number e.g. <i>twenty-two tenths, twenty-one tenths, two wholes</i> 	Show me if this strip represents 0-1, where 0.3 would be. What if the strip represents 0-2?
 Equivalence Manipulating fraction pieces (circular or strips) to discover relationships between them. For example, that two ¹/₆ pieces make a ¹/₃ piece Finding two given fractions of a set of objects and realising that the results is the same (so the fractions must be equivalent) Folding paper strips vertically (rectangles) to 	 12. Recognise equivalent fractions; show that two fractions are equivalent Say whether two fractions shown concretely are equivalent by manipulating the parts into the same number of groups and comparing Say whether two fractions shown visually are equivalent by redrawing the parts in the same number of groups and comparing Find equivalent fractions from a selection provided, 	Always, Sometimes, Never? You cannot compare fractions with different denominators Convince me that you can see the whole fraction family using an array Always, Sometimes, Never? There is no equivalent fraction to 4/5



@aetmaths aetmathematics.org mathstoolkit.org

This document can be used but we restrict editing or removal of the Academies Enterprise Trust logo. Copyright © AET Solutions Ltd (AETS) 2010 All rights reserved.

@aetmaths aetmathematics.org mathstoolkit.org

Misconceptions	Teacher Guidance and Notes
Some children struggle to read a fraction from a concrete or visual representation. This is usually because they do not understand how the whole and the highlighted/shaded parts relate to each other. They may read fractions as pieces rather than as equal parts of and in the whole. For example, in a shape divided into eighths, where three parts are shaded it may be written as 3/5 as five parts are unshaded.	 Until this point, children have only really worked with halves and quarters and basic thirds. This unit is the opportunity for them to apply these ideas to fractions with denominators of up to 10. Be aware that children's times tables at this stage cover 2s, 3s, 4s, 5s, 6s, and 10s and hence these should be the focus of any calculations involving larger numbers.
Some children do not fully recognise that the parts of the whole must be of equal size (although not necessarily equal shape).	 It is absolutely essential that by this stage of learning children understand the role of the denominator (and then the numerator). i.e. the denominator shows how many equal parts a number, or an object, or a set of objects, has been divided into, while the numerator (top
They also do not see the denominator as an indicator of the number of parts in the whole and use it directly to order fractions, believing that fractions with a larger denominator are bigger. For instance, they may say that $1/10 > 1/5$ because $10 > 5$.	 number) tells us how many of those parts there are. Look out for children who do not divide a quantity or object into EQUAL parts as these children do not fully understand the meaning of the fraction. Spend some significant time on representing fractions in multiple ways
Children may not have a complete understanding of a fraction as both a proportion of the whole (be that one whole object or a quantity or a set of objects) as well as a number in its own right.	 always model more than one representations and ask children to develop their own. You may want to slow down fluency steps 1 and 4 to enable confidence in representing fractions to develop. Possible representations would include: area diagrams using a range
When considering unit fractions, pupils may not understand that each 'part' needs to be the same size	of different shapes, number lines, words, symbols, some decimal equivalents and percentages, fractions as a result of division. Pictorial representations of a particular fraction may be of different sizes and
Pupils often interchange the denominator and numerator	different shapes. For example, don't always use shaded sections of circles, and interesting discussions can be had from drawing half of a small square and a quarter of a larger square and asking which is the
Look out for international language e.g. the use of a 'fourth' for a quarter. Similarly, listen to how children pronounce non-unit fractions e.g. 2/3 is sometimes	larger fraction (and this means you have to be careful when using areas to explain fractions!).
said as '2 over 3' or '2 threes' rather than a more valid alternative such as 'two thirds'.	• There is a key learning point that the rest of KS2 and KS3 depends on that emerges in Stage 3 - that is the difference between fractions as ordinal numbers (as numbers on a number line), fractions as being a special kind of cardinal number (the answer to 1/2 of a number
When comparing fractions and looking at equivlaence, pupils may be swayed by a numerator to determine size e.g. they may say that $2/6 > 1/3$ because $2 > 1$ with no consideration for the different denominators	depends on the quantity you are using) and fractions as operators (What is $\frac{1}{2}$ of 30? What is 2/3 of 45?). Ensure that all of these are covered!
Children tend to become attached to one or two representations of a fraction and this limits their ability to transfer their knowledge to fractions as 'proportions of' or fractions as 'numbers' or fractions as 'a process of sharing' e.g. 2/3 as 2 shared by 3. They may select an inappropriate representation to assist them with a given problem.	 In Stage 3 we are especially developing children's understanding of a fraction as an actual number between 0 and 1 (for proper fractions). Make connections with a range of representations here to show how dividing the number line between 0 and 1 enables you to 'see; where 1/3 must sit for example. When comparing and then ordering (which is just comparing with more than two items!), use the number line or array representations to

give you best access - this way children can see which fraction is larger once they have been positioned in a comparable way. You might want to start by showing two LESS useful comparative representations to get children to realise the difficulties for themselves.

• Make connections to other topics - ie time and fractions on a clock face as well as fractions linked to a range of measurements.

Key Assessment Checklist

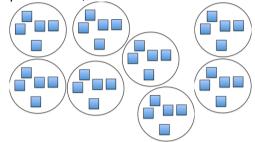
- 1. I can find unit fractions of a discrete set of objects using a division process.
- 2. I can find simple non-unit fractions of a discrete set of objects.
- 3. I can write an amount of objects as a fraction of a whole set
- 4. I can recognise a unit fraction as a number between 0 and 1 and position it on a number line.
- 5. I can compare and order unit fractions
- 6. I can recognise a non-unit fraction as a number between 0 and 1 and position it on a number line.
- 7. I can compare and order fractions with the same denominator
- 8. I can recognise two equivalent fractions represented visually; I can create representations to show whether two fractions are equivalent.
- 9. I can use my knowledge of fractions to solve problems involving quantities (ie money)
- 10. I can add fractions with the same denominator within one whole representing this visually
- 11. I can subtract fractions with the same denominator within one whole representing this visually
- 12. I can solve problems involving adding and subtracting fractions with the same denominator

Year 3	Unit 9 : Solving Number Problems			
16 learning hours	This unit continues pupils' earlier study of arithmetic (and algebra for secondary students. At Key Stage 1 children are working on multiplication (and division in Stage 2) as a way to represent repeated addition and scaling (and repeated subtraction – grouping - and sharing) At Key Stage 2 children are developing skills in applying their arithmetic to more complex problems. At secondary level and in Stage 6, students begin to find unknown values by applying inverse operations. Equations of all types including quadratic and simultaneous are covered in later stages.			
Prior Learning	Core Learning	Learning Leads to		
 calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (÷) and equals (=) signs show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot 	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods	 find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers multiply two-digit and three-digit numbers by a one-digit number 		
	Exemplification	Vocabulary		
 1. a) Represent the following problem pictors b) Write these addition statements as m c) Write a multiplication statement for the * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	nultiplication statements: (i) 2 + 2 + 2 + 2 (ii) 3 + 3 + 3 nis array	multiplication division repeated addition scaling multiplied by lots of/groups of/sets of times larger/smaller product divided by shared between		
e) Calculate 18 × 4. You can use diag		array row; column times table facts fact family partition		

f) Calculate $52 \div 3$ g) Find the missing number in these multiplications a $3 \times \boxed{} = 12$ $\boxed{} X 3 = 15$ $4 \times \boxed{} = 20$ $8 \times \boxed{} = 24$	Ind divisions	grid solve scaling commutative
Representation	Fluency	Probing Questions
 Simple Multiplication Arranging Numicon pieces end-to-end to represent groups and overlaying 10s and finally other pieces to find the total value Using a bead string to represent groups and find the total quickly using place value Drawing jumps on a (numbered and then blank) number line to represent groups 	 Solve practical problems involving multiplication e.g. Roy has 9 buckets with 3 crabs in each. How many crabs does he have altogether? represent the problem concretely or visually using groups or scaling (as implied by the question) find the total by counting (or efficient counting e.g. in 3s) 	Show me how you can represent this problem visually: Alice has 6 boxes. In each box there are 4 sweets. How many sweets does Alice have altogether?
 blank) number line to represent groups and marking intermittent values Building groups of single objects such as counters or cubes using hoops or other containers (or drawing these visually). Organising groups of single objects into columns to form an array. For example, here are six groups of 5 counters shown as a 6 x 5 array 	 2. Explain and calculate with increasing speed abstract mathematical statements for multiplication within the times tables e.g. 7 x 4 represent the statement concretely or visually using groups represent the statement using a concrete or visual array represent the statement concretely or visually using scaling find the result by counting efficiently or portioning and recombining record the result at the end of the number sentence recognise that a multiplication represents a repeated addition i.e. convert 3 + 3 + 3 + 3 to 3 x 4 	Show me the missing number: $3 \times \square = 18$ $\square \times 2 = 24$ What's the same and what's different? 14×2 , double 14, the number twice as big as 14, 28
 Multiplying multiples of 10 Representing a multiple of 10 multiplied by a single digit number using place value equipment to harness pupils' unitisation skills. 	 3. Calculate a multiple of 10 multiplied by a single digit Recap: 10 × single digit 20 × single digit 30 × single digit 40 × single digit 	Convince me that 15 x 10 = 150 Always, Sometime, Never? The 30 times table is just the 3 times table with 0s on the end.

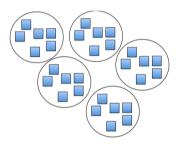
For example, 40 x 5 is 4 tens multiplied by 5 which is 20 tens or 200. Here is 4 x 5 1 1 1 1 1 1 1 1 1 1 1 1 1 compared to 40 x 5 1 1 1 1 1 1 1	 50 × single digit 80 × single digit 60/70/90/100/110/120 × 2/3/4/5/8 	
Mental multiplication	4. Calculate mentally a two-digit number multiplied by a single	Convince me that 23 x 4 is the same
 Building larger arrays for numbers beyond the times tables For example, here is an array showing 13 x 3 	 digit (2, 3, 4, 5, 8) (with jottings) 11-19 x single digit (no bridging) e.g. 13 x 3 11- 19 x single digit (bridging) e.g. 17 x 3 two-digit x single digit (no bridging) e.g. 31 x 8 two-digit x single digit (bridging) e.g. 36 x 4 	as $20 \times 4 + 3 \times 4$ Convince me that $29 \times 3 = 30 \times 3 - 1 \times 3$
 Partitioning these arrays to show that the total can be found by finding sub-totals first 10 x 3 3 x 3 Using shorthand partitioning to apply this e.g. 13 x 3 = 10 x 3 + 3 x 3 		
Multiplying – written methods	5. Calculate a two-digit number multiplied by a single digit (within	Show me how you could represent 13
 Building arrays using place value counters 1 1 1 Using a grid method to generalise an array 	 2, 3, 4, 5 and 8 times tables) using any written method 11-19 x single digit (no bridging) e.g. 13 x 3 11- 19 x single digit (bridging) e.g. 17 x 3 two-digit x single digit (no bridging) e.g. 31 x 8 two-digit x single digit (bridging) e.g. 36 x 4 	x 5 with an array Convince me that 38 x 4 = 152 in two different ways.

•	For ex becom	ample ne 3 igating and t	e it withou e, the arra 10 30 g the links he compa	ay abo 3 9 s betw	ve wo	he grid		
	1	3 3	x	1	6 3	x		
	3	9		4	8			
•			he differe addition a			en models		
			2 x 4	Re 1 1 1 7 8 9	9 10	Addition: 4 groups of 2 es as big as 2		
Multipl •	Using calcul For ex 13 bis	the bations ations ample cuits.	ar model t e: packets	s of bis /s four	scuits		 6. Recognise and solve simple word problems (out of context) involving multiplication using number sentences e.g. What is four times as many as 18? choose an appropriate representation solve the problem write a number sentence to represent the problem 	Show me how you can represent this problem visually: Jane is drawing a picture of a flower. Her picture is 4cm tall. The real flower is 3 times as tall as this. How tall is the real flower? Convince me that multiplying a number by 8 is the same as doubling, then doubling again, then doubling again.


7.

8.

Division


• Sharing out objects equally into 2, 3, 4, 5, 6 or 10 groups

E.g. for $40 \div 8$ there would be 40 items counted and then shared into six piles (divided into 8) and the number in each pile counted, which is 5.

• Grouping objects into 2s, 3s, 4s, 5s, 8s or 10s and so on before counting the number of groups produced

e.g. $30 \div 6$ or 30 grouped into 6s produces 5 groups

 Using a bead string/Numicon for grouping/repeated subtraction

(24 beads then grouped into 3s produces 8 groups)

• Using a number line to show repeated subtraction to see how many groups fit inside e.g. 15 ÷ 5

 Solve practical problems involving division e.g. Emma has 28 sweets. She shared the sweets between 4 party bags. How many sweets does she put in each bag? represent the problem concretely using grouping or sharing (as described by the question) find the result by counting the number of groups or number in each group as appropriate ext: solve reverse problems e.g. A number divided by 3 gives 18. What was the number? 	Show me how you can represent this problem visually: Jay has 18 hats. He shares the hats equally into 3 bags. How many hats will there be in each bag?
 Explain and calculate (abstract) mathematical statements for division within the times tables e.g. 32÷ 4 represent the statement concretely or visually by sharing find the result by counting the number in each group represent the statement concretely or visually by grouping find the result by counting the number of groups represent the statement concretely or visually using an array (organised grouping) find the result by counting the number of columns (groups) record the result at the end of the number sentence 	Show me the missing number: $20 \div \Box = 5$ $\Box \div 3 = 7$ What's the same and what's different? $32 \div 2$, half of 32, the number half the size of 14, 16

 For a calculation p ÷ q, grouping a set of p counters into groups of size q, arranging these groups as an array. For example, for 24 ÷ 3, count out 24 counters and arrange in columns of 3 then read off the answer of 8 as the number of columns 8 3 6 7 8 9 	 9. Calculate a multiple of 10 divided by a single digit (2, 3, 4, 5, 8) Recap: multiple of 10 ÷ 2 e.g. 140 ÷ 2 multiple of 10 ÷ 3 e.g. 90 ÷ 3 multiple of 10 ÷ 4 e.g. 240 ÷ 4 multiple of 10 ÷ 5 e.g. 350 ÷ 5 multiple of 10 ÷ 8 e.g. 160 ÷ 8 ext: multiple of 10 ÷ 6/7/9/11/12 (where the answer is 20/30/40/50/60) e.g. 360 ÷ 12 10. Calculate mentally a two-digit number divided by a single digit 	Convince me that $240 \div 8 = 30$ What's the same and what's different? $360 \div 6$ and $36 \div 6$ Convince me that $76 \div 4$ is the same
 Using a number line to show partitioned grouping. 	 (2, 3, 4, 5, 8) (with jottings) two-digit ÷ single digit (tens and units multiples of the 	as $60 \div 4 + 16 \div 4$ Convince me that $87 \div 3$ is the same

@aetmaths aetmathematics.org mathstoolkit.org

For example, $42 \div 3$ can be found by considering known multiples of 3 Partitioning a larger number to divide each part and then recombine For example: $\begin{array}{r} 42 \div 3\\ 30 \div 3 + 12 \div 3\\ 10 + 4\\ 14\end{array}$	 single digit) e.g. 84 ÷ 4 two-digit ÷ single digit by partitioning (chunking) e.g. 72 ÷ 3 two-digit ÷ single digit by mental skills e.g. halving and halving again to divide by 4 	as 90 ÷ 3 - 3 ÷ 3
 Building a number using place value counters and grouping them into groups that are the size of the divisor, before arranging these groups as an array to explore the partitioning approach. For example, 39 ÷ 3 Repeating the above, but exchanging remaining counters for 10 counters of the next size down before continuing to group. For example, 42 ÷ 3 	 11. Calculate a two-digit number divided by a single digit (2, 3, 4, 5, 8) using a written method two-digit ÷ single digit (tens and units multiples of the single digit) e.g. 96 ÷ 3 two-digit ÷ single digit e.g. 72 ÷ 3 using any written method (partitioning, compact method) 	Show me how you could represent 72 ÷ 3 with an array Convince me that 87 ÷ 3 = 29 in two different ways.

 Division Problems Using the bar model to represent calculations For example: Bob has 52 sweets. He divides them into 4 party bags. How many sweets will be in each bag? 	 12. Recognise and solve word problems (out of context) involving division using number sentences e.g. What is 56 shared between 4? choose an appropriate representation solve the problem write a number sentence to represent the problem ext: solve reverse problems e.g. A number multiplied by 3 gives 54. What was the number? 	Show me how you can represent this problem visually: Jane is drawing a picture of a flower. The real flower is 40cm tall, which is 8 times as tall as her picture. How tall is the drawing of the flower? Convince me that dividing a number by 8 is the same as halving, then halving again, then halving again.
 Representations of Multiplication and Division Writing statements for images of arrays, groups, scaling diagrams etc. Writing all the statements represented by a single bar model 	 13. Given a representation, suggest a (multiplication and/or division) calculation that it represents groups diagram scaling diagram array 	What's the same and what's different? 7 x 3, 3 x 7, 3 x 21, 21 \div 3, 21 \div 7, 21 x 7, 7 \div 3, Always, Sometimes, Never? The opposite of multiplying by 3 is finding a third
13 13 13 13	 14. Find the fact family for a given multiplication or division given a multiplication, find the answer and then the other three related calculations given a division, find the answer and then the other three related calculations from a representation e.g. an array say whether a rearranged fact is true or false e.g. is 7 x 8 = 56 then is it true that 8 ÷ 56 = 7? 	Show me the fact family for 6×5 Show me the fact family for 17×3 Convince me that when you know a times table fact, you actually know 4 facts Always, Sometimes, Never? If you know that a $x = c$ then you also know that a $\dot{x} = c$
	 15. Ext: Solve a mixture of multiplication and division problems know key trigger words for multiplication and division and hence recognise whether problem is multiplication or division find a missing number in a multiplication problem find a missing number in a division problem 	What's the same and what's different? multiply, lots of , groups of, divide, product, shared by, shared between, grouped into, quotient Always, Sometimes, Never? Multiplying is the opposite of dividing
	 16. Recall times table multiplication and division facts (3s, 4s and 8s as well as 2s, 5s and 10s) By representing the calculation concretely to 	Always, Sometimes, Never? Every times table fact has two related division facts

 → By relating calculation → By beginn 	enting the calculation visually to deduce er. g the calculation to another known n and counting on/back or doubling etc. ing to recall key facts.
Further Extension	Rich and Sophisticated Tasks
1. Find the missing digits. 2 1 4 $\frac{x}{1}$ 8 $\frac{x}{1}$ $\frac{1}{2}$ $\frac{x}{7}$ $\frac{x}{1}$ $\frac{8}{1}$ $\frac{x}{1}$ $\frac{1}{2}$ $\frac{x}{7}$ $\frac{3}{6}$ 2. $\frac{1}{2}$ 1	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods NRICH: <u>Andy's Marbles</u> NCETM: <u>Always, Sometimes, Never</u> : NCETM: <u>Always, Sometimes, Never</u> : NCETM: <u>Pendulum Counting</u> : NCETM: <u>Multiplying Numbers</u> : NCETM: <u>Multiplication and Division Reasoning</u>
Misconceptions	Teacher Guidance and Notes
Children may assume that, since multiplication is commutative, division is commutative and can be done in any order! They may write sentences such as $6 \div 2 = 12$ due to this. Therefore, they may struggle to correctly re arrange the numbers of a times table fact into the corresponding division fact, for example they may put the smaller numbers first in division calculations. Children may not see how an array can be used to support division, only multiplication. Poor understanding of place value may affect a child's ability to partition correctly and to calculate the result of a multiple of 10 x 1d. Children with weak understanding of how to represent a multiplication as an array may struggle to represent and calculate a 2dx1d multiplication and fail to see why they need to be able to partition it. They may try to work with a very large array rather than sectioning it off and partitioning.	 In this unit the focus is on developing the methods for multiplication and division in direct calculations and simple problems. The opportunity to solve more complex problems combining techniques comes later in Unit 13. Students working at greater depth can, of course, attempt more complex problems now but this is not a general expectation. Children have experience of calculating and recording multiplications and divisions from Stage 2, although this may have occurred using apparatus and only within the 2, 5 and 10 times tables or with very small numbers. The 2, 5, 10, 3, 4 and 6 times tables are suitable to be used in questions in Stage 3. Clearly, knowledge of times tables is essential to this unit and so regular practice of times tables all year round is recommended. Specifically, try to ensure that children do not just count forwards in multiples and that they have lots of exposure to counting back as well

Some children struggle to understand the range of language of multiplication and division e.g. they may forget the meanings of 'lots of', 'times bigger', 'product' etc.

Similarly, they may find it hard to understand what operation they need to use from a word problem because there are so many ways to imply a multiplication or division.

Children often fail to recognise scaling problems as multiplication (or division problems) and find it hard to represent these practically.

Some children may not yet have a strong understanding that multiplication is the inverse of division and so find it hard to move between the two operations.

as forward. When teaching or rehearsing times tables make the link to division very clear. Encourage children to produce the fact family for a given times table fact (i.e. the commutative multiplication fact plus the two related division facts).

- Throughout the unit, make sure that the language of calculation is both modelled and displayed - ensure you use ALL OF multiplication, times, lots of, groups of, multiply, product, times bigger, times as big etc.
- In Unit 13, there is a strong focus on applying the skills above to problem solving. To be ready for this, children need to be confident and competent in calculating multiplications and divisions using both representations (repeated addition and scaling for multiplication and sharing and grouping for division). Therefore, it is key that you represent calculations in both ways now too. You could also use the bar model to show multiplications and divisions so that it can be used as a problem solving tool later.

Key Assessment Checklist

- 1. I can recall times table facts for 2s, 5s, 10s, 3s, 4s and 8s
- 2. I can represent and calculate multiplication statements
- 3. I can multiply a multiple of 10 by a single digit. e.g. 20 x 3.
- 4. I can multiply a 2d number by a 1d number using mental methods and jottings
- 5. I can multiply a 2d number by a 1d number using partitioning leading to more formal methods.
- 6. I can represent and calculate division statements
- 7. I can divide a multiple of 10 by a single digit e.g. $80 \div 4$
- 8. I can divide a 2d number by a 1d number using mental methods and jottings.
- 9. I can divide a 2d number by a 1d number using partitioning or another written method
- 10. I can find a missing number in a multiplication or division calculations; I know that they are inverses.

	Year 3	Unit 10 : Investigating Statistics				
8 learning) hours	In this unit children and students explore the collection, representation, analysis and interpretation of data. It covers a range of calculations of central tendency and spread as well as multiple charts and graphs to represent data As it is the only unit directly exploring statistics, it is critical that children have time to explore the handling data cycle here and to focus sufficient time on interpreting their results.				s to represent data.
	Prior Learning					Leads to
 pictog diagra ask ai by cou in eac catego ask ai ask ai totallir 	ret and construct simple grams, tally charts, block ams and simple tables nd answer simple questions unting the number of objects ch category and sorting the ories by quantity nd answer questions about ng and comparing orical data	 interpret and present data using bar charts, pictograms and tables solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables solve comparison, sur difference problems us information presented 			ata using appropriate thods, including bar me graphs rison, sum and oblems using presented in bar grams, tables and	
	Exemplification					cabulary
Class	Weekly awards for a tidy classroom	class	e to the table below. Number of awards		data category(ies) pictogram key	interval bar chart how many more (less)
Reception Year 1	•••••• •••••+1	YR		-	symbol represents	difference total
Year 2	•••	Y1 Y2	6	-	tally bundle frequency	popular common rare
Year 3	+2	Y3			frequency table	more than
Year 4		Y4			total frequency scale	fewer than
Year 5	•••	Y5				
Year 6	••• ••• +1	Y6				
Draw a bar	chart to represent the inform	ation.				

2. The graph shows how many minutes Sam spent watch Watching TV 120 100 100 100 100 100 100 100	- - - - - - - - - - - - - - - - - - -	
Representation	Fluency	Probing Questions
 Pictograms Students need to explore the benefit for using one symbol to represent multiple items Get students to draw a pictogram with high frequencies (multiples of 2 or 10) using a symbol to represent one item. Then suggest representing the same data but with one symbol for 2 or 10 items so students discover the time saving benefit and how it is easier to manage Students should discover why a key is useful by analysing pictograms without them. Students need to develop methods for handling values that aren't multiples of the symbol representation 	 Pictograms draw a pictogram with one symbol for one item draw a pictogram for data in multiples of 2 or 10 where each symbol represents 2 or 10 include a key on a pictogram draw a pictogram for data not in multiples where each symbol represents 2 or 10 select a suitable key for a pictogram given a data set 	Show me how you would represent three objects using this symbol (symbol worth 2, 4 etc.) Show me how many these symbols represent (pictogram symbols worth more than 1 inc partial symbols) Convince me that it is not a good idea to let my symbol represent 7 objects in my pictogram Convince me that it is quicker to draw a pictogram when each symbol represents more than one object
	 2. Interpreting pictograms create a frequency table for a pictogram where symbols represent 1 create a frequency table for a pictogram where symbols represent more than 1 	Convince me that the most popular answer was

 Tally charts Recap multiple of 5 strike through Get students to record two similar experiments; one directly into a frequency table, and one with a tally chart to see the benefit of the tally for this purpose 	 identify a key given a pictogram and corresponding frequency table find totals and make comparisons for a pictogram 3. Tally charts/frequency tables create a tally from a frequency table record directly into a tally chart from an experiment or survey create a frequency table from a tally chart create an ordered frequency table from a tally chart 	Show me the tally chart that this pictogram may have come from What's the same and what's different? tally and list Always, Sometimes, Never? A pictogram is easier to read than a tally chart
 Bar charts Students should explore the benefit of a scale with equal increments by analysing bar charts that don't have them and are misleading When dealing with data with large frequencies, get students to create a bar chart with unit scale, then recreate with a scale of 2,5 or 10 etc. to see the benefit and space saving Students should become comfortable drawing bars that are in between increments on the scale 	 4. Bar charts identify all categories and place on the x axis label and mark values on axis create a bar chart for data that goes up in 1s create a bar chart for data that goes up in 2s or 10s identify and use a suitable scale from a data set use equal increments when creating a scale in y axis 	Show me the frequency table for this data set Convince me that the best way to display the data is using a bar chart What's the same and what's different? bar chart and block graph What's the same and what's different? 2s, 5s, 7s, 10s as amounts to go up in for scale
 Students should identify how to construct a frequency table from a chart. A match up activity will help them discuss ideas around this. Students should discover the benefit of using a frequency table to make numerical comparisons and charts to make value judgements (e.g. most popular etc.) Challenge students to directly make comparisons using the scale on a chart 	 5. Interpreting bar charts find totals from a bar chart with a scale that goes up in 1s interpret a bar chart with a scale in 2s or 10s interpret a bar chart with a scale in 5s match-up bar charts with frequency tables 	Show me the frequency table that this bar chart came from Convince me that the most popular answer was Always, Sometimes, Never? The highest value on a bar chart is the best Always, Sometimes, Never? You can find the exact list of data that a bar chart came from

	Fu	rther Extension	Rich and Sophisticated Tasks
ymbol use Vhich valu			NRICH: <u>Our Sports</u> * I NRICH: <u>Class 5's Names</u> * P NRICH: <u>Going for Gold</u> * I NRICH: <u>The Domesday Project</u> * I NRICH: <u>The Car That Passes</u> * I NRICH: <u>Now and Then</u> ** P
	Hard work	Good behaviour	NRICH: Real Statistics *** P
YR	42	32	NRICH: If the World Were a Village * P
Y1	39	18	NRICH: <u>It's a Tie</u> ** I
Y2	24	27	Solve one-step and two-step questions [for example, 'How many more?' and
Y3	30	33	'How many fewer?'] using information presented in scaled bar charts and
Y4	18	24	pictograms and tables
Y5	30	24	NRICH: The Olympic Flame: Are You in the 95%? * P
V for a we	ek.	t data on how many hou	atch
. Work wit V for a we	n two friends to collec ek. you will combine and		Teacher Guidance and Notes

assuming that a higher number is always the best and not using language related to the situation.		 It is also well worth asking children to work backwards and construct the frequency table (and maybe even the original data list) from the chart itself. 			
	Key Assess	ment Checklist			
1.	1. I can record data from an experiment or survey directly in a tally chart				
2.	2. I can produce a frequency table from a list of data or a tally chart				
3.	3. I can construct a pictogram for my data where each symbol represents more than one object				
4.	4. I can construct a bar chart for my data using a scale that goes up in 1s				
5.	5. I can construct a bar chart for my data using a scale that goes up in 2s or 10s				
6.	6. I can read information from a pictogram where each symbol represents more than one object.				
7.	7. I can read information from a bar chart where the scale goes up in 2s, 5s or 10s.				
8.	I can answer complex questions about my data using my readings from a bar chart or pictogram.				

Year 3	Unit 11 : Visualising Shape		
8 learning hours	In this unit children focus on exploring shapes practically and visually. There is an emphasis on sketching, constructing and modelling to gain a deeper understanding of the properties of shapes. It is therefore necessary to secure the practical skills at the same time as using them to explore the shapes in questions. At secondary level students are developing their skills in construction and the language/notation of shape up to the understanding, use and proof of circle theorems.		
Prior Learning	Core Learning Leads to		
 identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] 	draw 2-D shapes and make 3-D shapes using complete a simple symmetric		
Exem	plification	Vo	cabulary
 1. a) Draw (i) a pentagon (ii) an isosceles triangle (iii) a re b) Count out two sets of 12 cubes. Use your cubes to make two different cuboids. c) One face of a 3D shape looks like this: What could the shape be? 	nplificationVocabularvectangle of length 3cm and width 2cmshape circle square triangle rectanglesides cectar draw rectangular pentagon thexagon constr octagon square build hexagon constr octagon straigh cube flat cuboid triangular shape square based dimen 		faces vertices edges draw make build construct straight flat curved shapes dimension dimensional 2D 3D cross-section
Representation	Fluency		Questions
 2D Shapes Using spaghetti and marshmallows to produce polygons (from their name, from a description or with a given property) Using geoboards and elastic bands to produce polygons 	 Recap: Describe the sides and vertices of simple 2D shapes (from diagrams or names) sketch a named 2D shape e.g. triangle or hexagon state the number of vertices of a 2D shape state the number of sides of a 2D shape use number of sides/vertices to identify 	Convince me tha have a point faci Convince me tha be turned around direction	ng down

AETmathematics.org

•	Drawing squares and rectangles on squared paper (or dotty paper) (can extend to other rectilinear shapes if desired)	2.	 properties given a property, suggest a possible shape e.g. four sides or all sides are equal length given a property, suggest all possible shapes e.g. four sides or all sides are equal 	Show me a triangle cut out of paper What's the same and what's different? square, hexagon, pentagon, triangle Show me all the different shapes you can make from 4 straws (when you are allowed to cut them!) Always, Sometimes, Never?
		3.	 length given several properties, pinpoint the exact shape e.g. three sides, one line of symmetry Draw more complex 2D shapes rectangles and squares to scale on squared paper sketch different types of triangle (equilateral, isosceles, scalene or right-angled) sketch different types of quadrilateral 	The bottom of a square can be horizontal, vertical or diagonal Convince me that a square cannot have different length sides Show me a square with sides of length 5 squares a rectangle with 2 sides of
			 (rectangle, square, parallelogram, rhombus, kite) sketch other polygons with specific features e.g. a pentagon with a line of symmetry visualise an image described and then sketch this e.g. a square overlapping an equilateral triangle 	10cm and 2 sides of 4cm a right angled triangle What's the same and what's different? right angled, isosceles, scalene, equilateral
Circles • •	Using compasses to explore how to draw circles Drawing designs such as the Seed of Life	4.	 Draw a circle by drawing round an object using a pair of compasses produce semicircles and other sectors measure the width (diameter) of the circle 	Always, Sometimes, Never? The distance from the centre to the edge of a circle is fixed.

	or the distance from the centre to the edge (radius)	
 3D Shapes - Faces Manipulating and turning 3D shapes to observe what they look like from different viewpoints e.g. from above or from the front Printing and stamping with the faces of 3D shapes to explore their shapes and how they connect 	 5. Recap: Recognise, name and describe the faces of simple 3D shapes cube cuboid pyramid (with different bases) cone prism (with different cross-sections) cylinder sphere (and hemisphere) 	Show me a sphere in the room Show me all the shapes you can think of with 6 faces Convince me that there is more than one 3D shape that looks like a square from above
 Modelling 3D shapes Making shapes using clay and other mouldable resources e.g. play-doh or plasticine. (By name but also by property e.g. make a shape with a square face) 	 6. Make models of 3D shapes using modelling materials e.g. plasticine spheres, cones, cylinders cubes and cuboids other prisms pyramids shape with a given property e.g. a face that is a triangle name the shape from a model presented in a range of orientations 	Show me a cuboid made out of plasticine What's the same and what's different? circle, sphere, cylinder, cube
 Modelling 3D shapes - skeletons Making skeletons of shapes using spaghetti and marshmallows (or geometric alternatives such as straws and balls of modelling clay or equivalent). Then exploring how many straws and connecting balls you need to make a cube? A pyramid? Making shapes using Polydron or equivalent resources by connecting faces together to form a closed polyhedron 	 7. Make skeleton models of 3D shapes using modelling materials e.g. straws and balls of clay cubes and cuboids other prisms pyramids shape with a given property e.g. a face that is a triangle name the shape from a model presented in a range of orientations 	What's the same and what's different? pyramid, prism, cuboid, sphere

 Drawing 3D shapes Sketching 3D shapes from models (as still life) Turning and re-orienting images of 3D shapes to recognise them For example: 	 recognise a orientation name 3D sh square face sketch a 3D say whether shape is a p 	es with given features drawn 3D shape in an unfamiliar apes with a given property e.g. a shape from a given viewpoint a given (model/drawing/named) rism or a pyramid (and why e features of any 3D shape in full	Always, Sometimes, Never? Cylinders have 2 circular faces Always, Sometimes, Never? Shapes with triangular faces are pyramids
Further Extension		Bish and Son	histiaatad Taska
Further Extension		Draw 2-D shapes and make 3-D s	histicated Tasks
True or false?		recognise 3-D shapes in different	
The shape of a cross section of a sphere is always a circle.		NRICH: Building Blocks * P	
The shape of a cross section of a cylinder		NRICH: The Third Dimension **	* P I
is always a circle.		NRICH: Rolling That Cube * P	
The shape of a cross section of a cone is		NRICH: Inky Cube *** P	
always a circle.		NRICH: <u>Triple Cubes</u> * I	
Explain your reasoning.		NRICH: Sponge Sections ** P	
		NRICH: <u>A Puzzling Cube</u> * P NRICH: Arranging Cubes * G	
Can you identify a 3-D shape where the sphere cylinder co	ne	NRICH: <u>Board Block Challenge</u>	*** G
cross section is always a square?		NRICH: Square Corners ** P	č
2.		NRICH: Stick Images * G P	
		NRICH: Overlapping Again ** P	

How many different triangles can you find on a 3×3 pin geoboard?	
How do you decide that they are different?	
How many different quadrilaterals can you find on a 3×3 pin geoboard?	
How do you decide that they are different?	
Misconceptions	Teacher Guidance and Notes
Children may still confuse 2D and 3D shapes because of the faces on 3D	Children have encountered a wide range of shapes in Stage 2
shapes and the complexity of the concept of a 2D shape.	but have only really looked at shapes from an angle point of
	view so far in Stage 3.
Children's understanding of surface can be weak and lead to issues	• Therefore, there is a need to recap basic shape names and
understanding the difference between the shape of a face and the whole	properties with children before beginning to look at special
shape.	types of triangles and quadrilaterals and so on.
	 This unit is all about the visualisation of shape and so strong
Children may interchange prisms and pyramids because of the vocabulary.	emphasis should be placed on constructing, modelling,
	making and sketching.
Children do not always realise that cones are not pyramids and cylinders are	 Children need to be encouraged to consider problems where
not prisms.	there is more than one answer e.g. how many 3D shapes can
Additionally they may not fully appreciate the difference between a cube and a	you make with a square face?
general cuboid (note that a cube IS a cuboid).	Ensure there is time for lots of practice with using drawing
	tools (rulers, compasses etc) - note that there is time within
Within this practical exploration of shapes, there may be issues that arise due	this unit allowed for the nature of the practical work required.
to difficulties with using a compass or a ruler as well as lack of fine motor skills	Materials such as straws and unifix cubes can be very useful
to actually model the shapes.	to children to really get the straight edges
	 For those children working at greater depth, try to exploit opportunities to think about the shapes that test the definitions
	e.g. is a cube a prism? What about a cylinder?

Key Assessment Checklist

- 1. I can draw squares and rectangles using squared paper
- 2. I can draw triangles (isosceles, right angled and scalene)
- 3. I can draw circles using a compass
- 4. I can make 3D shapes out of modelling materials
- 5. I can make outlines of 3D shapes using straws and mouldable dough (e.g. play-doh)
- 6. I can recognise rectangles and triangles in different orientations
- 7. I can recognise a range of 3D shapes in different orientations
- 8. I can imagine what a 3D shape looks like from above/the side/the front etc.

Year 3	Unit 12 : Exploring Change	
12 learning hours	For primary pupils this unit focuses on the measures elements of time and co-ordinates. There is a progression from sequencing and ordering through telling the time formally to solving problems involving time. The co-ordinate work flows in the secondary students' learning focused on the relationships between co-ordinates. Key objectives include the use of y=mx+c for straight lines, the use of functions and the graphing of more complex functions.	
Prior Learning	Core Learning	Learning Leads to
 compare and sequence intervals of time tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times know the number of minutes in an hour and the number of hours in a day. 	 tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks know the number of seconds in a minute and the number of days in each month, year and leap year compare durations of events [for example to calculate the time taken by particular events or tasks] estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight 	 read, write and convert time between analogue and digital 12- and 24-hour clocks solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days describe positions on a 2-D grid as coordinates in the first quadrant
	Exemplification	Vocabulary
1. a) Write the time shown on each of these x_{11} x		Roman Numerals clock second minute hour week month year leap year weekend calendar evening
b) Draw hands on each of these clocks to Quarter to eight	o show these times: 14:40	midnight noon 12-hour clock 24-hour clock analogue clock

$\begin{array}{cccc} 11 & 12 & & 11 & 11 \\ 10 & & 2 & & 10 \end{array}$		digital clock am pm
$9 \begin{array}{c} \bullet \\ 8 \\ 7 \\ 6 \end{array} \begin{array}{c} 5 \\ 7 \\ 6 \end{array} \begin{array}{c} 9 \\ 8 \\ 7 \\ 7 \end{array} \begin{array}{c} 9 \\ 8 \\ 7 \\ 7 \\ 7 \end{array} \begin{array}{c} 9 \\ 8 \\ 7 \\ 7 \\ 7 \\ 7 \end{array} \begin{array}{c} 9 \\ 8 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	• 3 4 6 5	estimate timetable convert duration how ling
2. a) How many months are there with 30 days?b) How many seconds are there in 2 minutes?c) How many days are there in a year?		
3. a) Jemma leaves home at 7:15 am and arrives at wor How long does it take Jemma to get to work?	k at 7.55 am.	
b) Jack goes out at 10:45 am and gets home at 2:30 p For how long has Jack been out?	pm	
4. A train takes 1 hour and 20 minutes to get to London. If the train leaves at 10:25 am, what time does it get to		
Representation	Fluency	Probing Questions
 Telling the Time Labelling a clock with key words, roman numerals, multiples of 5 and fractions. Then counting round the clock and moving the 	 Know and use the vocabulary of time o'clock half past quarter past 	What's the same and what's different? year and a leap year Always, Sometimes, Never? Time is only measured in hours,
hands to match either in 12-hour format e.g. 1:00, 1:05, 1:10, 1:15, or in analogue format e.g. one o'clock, five past one, ten past one, quarter past one, twenty past one, twenty-five past one,	 minutes past quarter to minutes to am pm morning, afternoon noon, midnight second, minute, hour day, week, month year, leap year 	minutes and seconds

@aetmaths aetmathematics.org mathstoolkit.org

	55 10 10 10 10 10 10 10 10 10 10	 24 hours in a day 60 seconds in a minute 7 days in a week the number of days in each month 365 days in a year (366 in a leap year) solve simple problems involving these e.g. number of days in 2 years. 	Show me something which would be measured better in hours than minutes Convince me that there are not 100 seconds in a minute Always, Sometimes, Never? Only one month has 28 days Always, Sometimes, Never? There are 365 days in a year
	It can be nice to do this using different overalys for the outer labels so you can shift from Roman numerals, to 24-hour clock, to past/to descriptors, to multiples of 5 and so on.	 3. Read and recognise roman numerals up to 12 read I, V, X read combinations from adding e.g. II, III, VI, VII, VIII, XI, XII read combinations from subtracting e.g. IV, IX write the numbers 1-12 as Roman numerals label a clock with Roman numerals 	Convince me that IX is smaller than VIII VI, 6, IV, 4
٠	Adding labels for 24-hour clock hours	4. Tell the time to 5 minutes using an analogue clock labelled	Show me another way of writing 6pm
	alongside 1-12.	 with numbers or Roman numerals recap: read times in words from a numbered clock (past 	and another
•	Making clocks using paper plates, card sticks and split pins for hands	 recap: read times in words from a numbered clock (pact the hour) recap: read times in words from a numbered clock (to the 	
•	Using manipulative clocks to show and read times (preferably mini-clocks for each child and a larger one for the teacher) Making human clocks using arms	 read times in words from a clock labelled with Roman numerals (past the hour) read times in words from a clock labelled with Roman numerals (to the hour) 	
•	Exploring digital clocks (and especially 24- hour clocks) by comparing to analogue clock	 5. Tell the time to the nearest minute using an analogue clock labelled with numbers or Roman numerals read times in words from a numbered clock (past the hour) read times in words from a numbered clock (to the hour) read times in words from a clock labelled with Roman numerals (past the hour) 	Always, Sometimes, Never? There are three hands on a clock

	 read times in words from a clock labelled with Roman numerals (to the hour) 	
	 6. Write times using 12-hour format read a time to 5 minutes from an analogue clock and record as a 12-hour time use am or pm to denote morning or afternoon correctly read a time to the nearest minute from an analogue clock and record as a 12-hour time record noon and midnight in 12-hour format 	Show me how you would write the time 'midnight' using the 12 hour clock
	 7. Write times using 24-hour format convert hour times to 24-hour times e.g. 2 o'clock converts to 02:00 or 14:00 	Show me how you would write the time 'midnight' using the 24 hour clock
	 convert other times to 24-hour times e.g. 'ten past two' converts to 02:10 or 14:10 read a time to 1 minute from an analogue clock and record as a 24-hour time record noon and midnight correctly in 24-hour format 	What's the same and what's different? midnight; noon; 00:00; 12:00; 12pm: 12am; 12 o'clock
	 8. Move or draw the hands on a clock labelled with numbers or Roman numerals to show a given time (words, 12-hour format or 24-hour format) standard clock, time in words e.g. eight minutes past three Roman numeral clock, time in words e.g. eight minutes past three standard clock, time in 12-hour format e.g. 10:20 am standard clock, time in 24-hour format e.g. 17:10 Roman numeral clock, time in 12-hour or 24-hour format 	What's the same and what's different? The big hand at III and the little hand at XI, 11:03 and quarter past eleven
 Estimating Time Predicting how long it might take to do simple activities eg walking to the hall. Then setting a stopwatch and all walking to hall to time it precisely and compare. Estimating lengths of time by putting heads on desk and sitting up when the time has elapsed. Discussing strategies and comparing to the real time. 	 9. Estimate times estimate a minute estimate a multiple of a number of seconds e.g. 10 seconds estimate a multiple of a number of minutes e.g. 5 minutes have a sense of an hour, a quarter of an hour 	Show me something that takes longer than one minute and another Convince me that it would not take you an hour to eat a sandwich

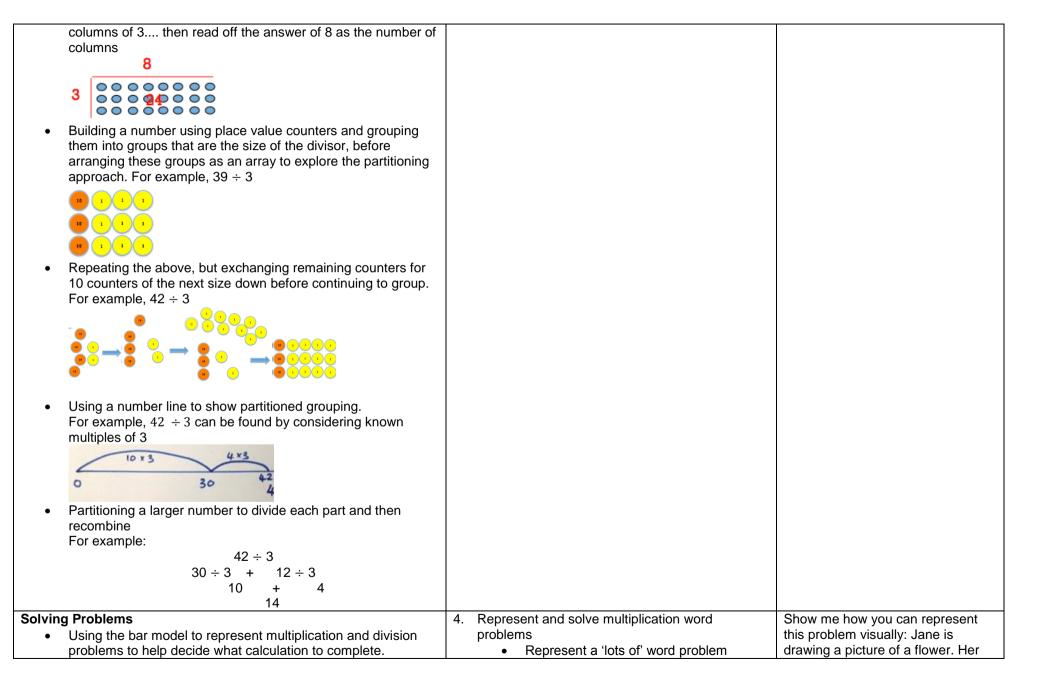
 Time Sequencing/Durations Representing a time (including those in excess of 60 minutes) by counting in 5s and using a clock rotation to convert to hours and minutes. Using a number line to represent and position times to support ordering 15 minutes 1 hour 90 minutes 	 order times giver find the difference 15 minutes and 3 order times giver find the difference 1 hour and 30 m order times in difference hours and 25 min find the difference 	n in mixed units e between two times in mixed units e.g. inutes and 3 hours and 20 minutes ferent units e.g. 3 hours, 150 minutes, 2 nutes e between two times in different units	Show me how many seconds there are in 3 minutes What's the same and what's different? 1200 minutes and 12 hours and half a day
 Making timelines to show events in sequence and with more accurate time positioning Using a number line to find time intervals and durations 25 minutes 20 minutes 40 minutes Exploring bus or train timetables to identify durations of journeys Looking at TV guides to calculate durations 	 find the difference duration of an activity where the start time and finish time are given (12-hour format, both morning or both afternoon) find the difference duration of an activity where the start time and finish time are given (12-hour format, one morning and one afternoon) 		Show me which of these bus journeys takes the longest Convince me that a programme starting at 17:10 and finishing at 17:40 lasts longer than a programme starting at quarter to four and finishing at five past four.
Further Extension		Rich and Soph	isticated Tasks
1. Match the two clocks that show the same time. $1 \\ 1 \\ 1 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 7 \\ 6 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		Tell and write the time from an analogue from I to XII, and 12-hour and 24-hour cl NRICH: <u>Two Clocks</u> ** P NRICH: <u>Clocks</u> * P NRICH: <u>The Time Is</u> ** P NRICH: <u>How Many Times</u> ? * I NRICH: <u>5 on the Clock</u> *** I Estimate and read time with increasing a and compare time in terms of seconds, r	clock, including using Roman numerals ocks accuracy to the nearest minute; record
		as o'clock, a.m./p.m., morning, afternoor NRICH: <u>Wonky Watches</u> ** P NRICH: <u>Watch the Clock</u> *** P	

2. These clocks have only one hand, but can you suggest a time that each could be showing? A B C C C C C C C C C C C C C C C C C C	Teacher Quidence and Notes
Misconceptions Some children may have insecure knowledge of reading the time and number, particularly counting in 5s. Similarly, there may be a misconception of working in base 10 with time that leads to issues around the use of 60 minutes in an hour, for instance. Thus they may believe that there are, for example, 100 seconds in a minute, 100 minutes in an hour and so on. There may be some misunderstanding of Roman Numeral symbols, particularly where numerals are combined and in numbers such as 4 or 9 where they are shown as one less than a symbol Many children will have unrealistic estimations and concept of time periods and actually how long it is. This is often because they count seconds too quickly. When starting to work out time periods, children may revert back to addition as if they were working in base 10. There may be confusion of am and pm, especially with noon, which should be shown as 12pm and midnight, which should be shown as 12am. Similarly, the use of am for early morning may be an issue - some children believe that am is when it is light and pm is when it is dark. The 24 hour clock can be problematic also. Some children find it hard to convert times because they add 10 instead of twelve e.g. they think 1pm is the same as 10 hours + 1 hour so will be 11:00 rather than 12 hours + 1 hour or 13:00. Leap years can cause some confusion, particularly with the rationale.	 In Key Stage 1 children have used standard clock faces to tell time to 5 minute intervals. The new content here lies in the use of roman numerals on clock faces, the official use of the 12-hour and the 24-hour clock. Note that children who followed the AET medium term plans in Stage 2 will have used 12-hour format to record times alongside the word format as a way into the concepts. Children only need to look at Roman numerals to 12 in Stage 3. Note that occasionally a clock face (particularly historically) 4 is shown using the Roman numerals IIII. This is the only situation where such a use of 4 repeated symbols is acceptable. You may wish to explain the historic origins of Roman numerals as signals using the human body. For example, I represents a finger, V represents a hand (5 fingers) and X represents two crossed hands (10 fingers) Ensure you are consistent in notating (and expectations when children are notating) times. Specifically, it is recommended that times are shown using a colon e.g. 10:15. As in Stages 1 and 2, it is good practice to use all opportunities to discuss and work out times all through the day regardless of current mathematical unit. Link times to the daily routine/class schedule. Similarly, having a visible daily timetable for class with analogue and digital alternatives beside each landmark in the day can assist.

Key Assessment Checklist

- 1. I can read the time from an analogue clock showing in word format.
- 2. I can tell and show the time using a clock with Roman Numerals on it.
- 3. I can tell the time and show a time using the 12-hour clock.
- 4. I can tell the time and show a time using the 24-hour clock.
- 5. I can use the terms am, pm, noon and midnight accurately.
- 6. I can solve problems where I convert seconds to minutes, days to months, years including a leap year etc.
- 7. I can estimate and record the amount of time a task or journey may take.
- 8. I can read time accurately to the nearest second, minute or hour.
- 9. I can calculate a duration of an activity given the start and end time.

Year 3	Unit 13: Proportional Reasoning		
8 learning hours	In this unit pupils explore proportional relationships, from the operations concepts of ratio, similarity, direct and inverse proportion. For primary pupils in Stages 1-3, this is focused on developing skills of d whole of calculation to broaden to all four operations in a range of contex emphasis here is really on representing and then solving a problem usin calculating alone. In Stage 6 the real underpinning concepts of proportion and ratio develop Secondary pupils begin to formalise their thinking about proportion by fin dividing quantities in a given ratio and fully investigating quantities in dire graphically.	livision. Stages 4 a kts and combination g their calculation s p. ding and applying	nd 5 revisit the n problems; the skills, not just scale factors,
Prior Learning	Core Learning	Learning	Leads to
 recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts 	 recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects 	facts for multi to 12 × 12 ➤ solve problen multiplying ar including usir law to multipl numbers by c scaling proble corresponder	nd adding, ng the distributive
	Exemplification	Vo	cabulary
 2. a) A teacher puts the children in a class into groups of How many groups will the teacher make? b) Matt is bottles of cola for a large party. They come Matt needs 35 bottles of cola. How many packs must c) A baby lizard measures 7cm. The caterpillar grows d) Paper cups cost 3p each. Abigail buys 28 cups. Ho 	$\div 4 = 9$ f 3. Altogether there are 27 children in the class. in packs of 8. he buy? until it is four times as long. How long is the caterpillar now?	multiplication division repeated addition scaling multiplied by lots of/groups of/sets of times larger/smaller product divided by shared between array	partition grid solve scaling commutative grid solve problem scaling correspondence operation prove



		row; column times table facts fact family
Representation	Fluency	Probing Questions
 Multiplication: Building larger arrays for numbers beyond the times tables For example, here is an array showing 13 x 3 Partitioning these arrays to show that the total can be found by finding sub-totals first 10 x 3 3 x 3 Building arrays using place value counters 	 Recall and use multiplication and division facts for the three, four and eight times table Count in 3s, 4s and 8s from 0 (forwards and backwards) Complete a missing answer for a multiplication instantly e.g. 7 × 3 = ■ Complete a missing answer for a division instantly e.g. 12 ÷ 4 = ■ Find a missing number in a multiplication statement e.g. ■ × 8 = 72 Find a missing number in a division statement e.g. ■ ÷ 4 = 7 Give the fact family for a multiplication or division by 3, 4 or 8 	Show me. a number that is in the 3 and 4 times tables but not in the 8 times tables and another and another What's the same and different? multiples of 4; multiples of 8; multiples of 2
 Using a grid method to generalise an array and imagine it without all the single objects For example, the array above would become 10 3 3 30 9 Investigating the links between the grid above and the compact formal method, that is 1 3 1 6 	 and division by (2, 5, 10) 3, 4 and 8 Given number cards and symbols, create correct multiplication and division statements Say if a given multiplication or division statement is true or false and justify this Find missing numbers in written calculations 	x b = c then you also know that a ÷ b = c
1 3 1 0 3 x 3 x 3 9 4 8 1 1 1 Division 1 1 • For a calculation p ÷ q, grouping a set of p counters into groups of size q, arranging these groups as an array. For example, for 24 ÷ 3, count out 24 counters and arrange in	 Recap: Multiply and divide 2-digit numbers by 1-digit numbers Multiply a 2-digit number by 2, 3, 4, 5, 8 or 10 mentally Multiply a 2-digit numbers by 2, 3, 4, 5 or 8 using a written (formal) method Divide a 2-digit number by 2, 3, 4, 5, 8 or 10 mentally Divide a 2-digit numbers by 2, 3, 4, 5 or 8 using a written (formal) method 	Convince me that $25 \times 3 = 20 \times 3 + 5 \times 3 = 10 \times 3 + 10 \times 3 + 5 \times 3$ Convince me that if I can calculate 10 x 3 and 1 x 3 I can calculate 19 x 3

 For example: Matt is buying balloons for a party. The balloons come in packs of 8. Matt buys 13 packets. How many balloons will he have for the party? 8 8	 concretely or visually (e.g. with groups or a bar model) Represent a 'scaling' word problem concretely or visually (e.g. with scaling or a bar model) Write a mathematical statement to show the calculation needed Solve the problem and complete the mathematical sentence to show the answer picture is 4cm tall. The real flower is 3 times as tall as this. How tall is the real flower? Show me how you can represent this problem visually: Alice has 6 boxes. In each box there are 4 sweets. How many sweets does Alice have altogether?
52 shared equally between 3	 5. Represent and solve correspondence problems of n objects being connected to m objects List the possible combinations of objects Find the total number of combinations of such problems
	 6. Represent and solve division word problems Represent a word problem concretely or visually (e.g. with groups or sharing or a bar model) Write a mathematical statement to show the calculation needed Solve the problem and complete the mathematical sentence to show the answer Show me how you can represent this problem visually: Jay has 18 hats. He shares the hats equally into 3 bags. How many hats will there be in each bag? Always, Sometimes, Never? Any number divided by 2 = one half of its original value
	 7. Identify the operation required to solve a multiplication or division problem know key trigger words for multiplication and division recognise whether problem is multiplication or division represent the problem concretely or visually solve the problem record the problem using a number sentence What's the same and different? multiply, lots of, groups of, divide, product, shared by, shared between, grouped into, quotient

	Carry out 2 order (e.g. subtraction	2-step problems visually operations in the correct multiplication then	Show me a number sentence that includes the numbers 3, 4, 8 and 20 Always, Sometimes, Never? dividing a multiple of 10 by 2 will result in a multiple of 5
Further Extension		Rich and Sor	histicated Tasks
1. Roger has 96 patio slabs. Using all of the slabs find three different ways that he can arrange the slabs to form a rectangular patio.	mu anc obje NR NR NR NR NR NR NR	ve problems, including missing tiplication and division, includir correspondence problems in vects CH: <u>A Square of Numbers</u> * P CH: <u>What do you Need?</u> * P CH: <u>This Pied Piper of Ham</u> CH: <u>Follow the Numbers</u> * P CH: <u>What's in the Box?</u> * P CH: <u>How Do You Do It?</u> * P CH: <u>Ip Dip</u> * I	number problems, involving ng positive integer scaling problems which n objects are connected to m G P elin ** P
 2. Sam is planting onions in the vegetable plot in his garden. He arranges the onions into rows of 4 and has two left over. He then arranges them into rows of 3 and has none left over. How many onions might he have had? 	NR	CH: <u>Journeys in Numberlan</u>	<u>d</u> * I
Explain your reasoning.			
 The following problems can be solved by using the calculation 8 ÷ 2. True or false? There are 2 bags of bread rolls that have 8 rolls in each bag. How many rolls are there altogether? A boat holds 2 people. How many boats are needed for 8 people? I have 8 pencils and give 2 pencils to each person. How many people receive pencils? I have 8 pencils and give 2 away. How many do I have left? 			

Misconceptions	Teacher Guidance and Notes
 Children may struggle to correctly rearrange the numbers of a times table fact into the corresponding division fact, for example they may put the smaller numbers first in division calculations. Some children may not yet have a strong understanding that multiplication is the inverse of division and so find it hard to move between the two operations. Children with weak understanding of how to represent a multiplication as an array may struggle to represent and calculate a 2dx1d multiplication and fail to see why they need to be able to partition it. They may try to work with a very large array rather than sectioning it off and partitioning. Poor understanding of place value may affect a child's ability to partition correctly and to calculate the result of a multiple of 10 x 1d. Some children struggle to understand the range of language of multiplication and division e.g. they may forget the meanings of 'lots of', 'times bigger', 'product' etc. Children often fail to recognise scaling problems as multiplication (or division problems) and find it hard to represent these practically. ssues with recall of multiplication facts may lead to some children making errors in calculations. 	 This unit builds on the earlier work on multiplication and divisio of Unit 9. While the focus of Unit 9 is on carrying out the calculations of multiplication and division, the emphasis shifts here to applying these skills to word problems and other contexts. The statement regarding the recall of 3, 4 and 8 multiplication tables/facts is repeated in this unit as it is expected that once again this will be a focus. However, by this stage of the year children should be increasingly confident and rapid in their recall and use of these facts. It is important to present a variety of problems to children throughout this unit, encompassing the full range of language of multiplication and division. It is common for scaling problems for multiplication, so you need to actively reverse this imbalance. Children working at greater depth can begin to combine techniques and operations to solve multi-step problems.
Key Assessment Che 1. I can use times table facts (3, 4, 8) to instantly find missing numbers in multiplication	
2. I can multiply and divide a 2-digit number by a single digit	
3. I can solve multiplication problems involving 2d numbers.	
 I can solve multiplication problems involving 2d numbers. I can solve division problems involving 2d numbers I can solve scaling problems involving either multiplication or division. 	

